Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2202003121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669184

ABSTRACT

Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed. By day 21, the cells had entered quiescence, and HIV DNA accumulated in the perinucleolar compartment (PNC). The localization of proviruses to the PNC was blocked by integrase inhibitor Raltegravir, suggesting it was due to chromosomal rearrangements. During the reactivation of latently infected cells through the T cell receptor (TCR), nascent viral mRNA transcripts associated with HIV DNA in the PNC were detected. The viral trans-activator Tat and its regulatory partners, P-TEFb and 7SK snRNA, assembled in large interchromatin granule clusters near the provirus within 2 h of TCR activation. As T cell activation progressed, the HIV DNA shifted away from the PNC. HIV DNA in latently infected memory T cells from patients also accumulated in the PNC and showed identical patterns of nuclear rearrangements after cellular reactivation. Thus, in contrast to transformed cells where proviruses are found primarily at the nuclear periphery, in primary memory T cells, the nuclear architecture undergoes rearrangements that shape the transcriptional silencing and reactivation of proviral HIV.


Subject(s)
Cell Nucleus , HIV Infections , HIV-1 , Proviruses , Virus Activation , Virus Latency , Humans , Proviruses/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , HIV-1/genetics , HIV-1/physiology , HIV-1/metabolism , HIV Infections/virology , HIV Infections/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , HIV Long Terminal Repeat/genetics
2.
Retrovirology ; 19(1): 1, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35033105

ABSTRACT

BACKGROUND: Our understanding of the peripheral human immunodeficiency virus type 1 (HIV-1) reservoir is strongly biased towards subtype B HIV-1 strains, with only limited information available from patients infected with non-B HIV-1 subtypes, which are the predominant viruses seen in low- and middle-income countries (LMIC) in Africa and Asia. RESULTS: In this study, blood samples were obtained from well-suppressed ART-experienced HIV-1 patients monitored in Uganda (n = 62) or the U.S. (n = 50), with plasma HIV-1 loads < 50 copies/ml and CD4+ T-cell counts > 300 cells/ml. The peripheral HIV-1 reservoir, i.e., cell-associated HIV-1 RNA and proviral DNA, was characterized using our novel deep sequencing-based EDITS assay. Ugandan patients were slightly younger (median age 43 vs 49 years) and had slightly lower CD4+ counts (508 vs 772 cells/ml) than U.S. individuals. All Ugandan patients were infected with non-B HIV-1 subtypes (31% A1, 64% D, or 5% C), while all U.S. individuals were infected with subtype B viruses. Unexpectedly, we observed a significantly larger peripheral inducible HIV-1 reservoir in U.S. patients compared to Ugandan individuals (48 vs. 11 cell equivalents/million cells, p < 0.0001). This divergence in reservoir size was verified measuring proviral DNA (206 vs. 88 cell equivalents/million cells, p < 0.0001). However, the peripheral HIV-1 reservoir was more diverse in Ugandan than in U.S. individuals (8.6 vs. 4.7 p-distance, p < 0.0001). CONCLUSIONS: The smaller, but more diverse, peripheral HIV-1 reservoir in Ugandan patients might be associated with viral (e.g., non-B subtype with higher cytopathicity) and/or host (e.g., higher incidence of co-infections or co-morbidities leading to less clonal expansion) factors. This highlights the need to understand reservoir dynamics in diverse populations as part of ongoing efforts to find a functional cure for HIV-1 infection in LMICs.


Subject(s)
HIV Infections , HIV-1 , Adult , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV-1/genetics , Humans , Proviruses/genetics , Uganda/epidemiology , Viral Load
3.
PLoS Pathog ; 17(10): e1010014, 2021 10.
Article in English | MEDLINE | ID: mdl-34673825

ABSTRACT

One strategy for a functional cure of HIV-1 is "block and lock", which seeks to permanently suppress the rebound of quiescent HIV-1 by epigenetic silencing. For the bivalent promoter in the HIV LTR, both histone 3 lysine 27 tri-methylation (H3K27me3) and DNA methylation are associated with viral suppression, while H3K4 tri-methylation (H3K4me3) is correlated with viral expression. However, H3K27me3 is readily reversed upon activation of T-cells through the T-cell receptor. In an attempt to suppress latent HIV-1 in a stable fashion, we knocked down the expression or inhibited the activity of UTX/KDM6A, the major H3K27 demethylase, and investigated its impact on latent HIV-1 reactivation in T cells. Inhibition of UTX dramatically enhanced H3K27me3 levels at the HIV LTR and was associated with increased DNA methylation. In latently infected cells from patients, GSK-J4, which is a potent dual inhibitor of the H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A, effectively suppressed the reactivation of latent HIV-1 and also induced DNA methylation at specific sites in the 5'LTR of latent HIV-1 by the enhanced recruitment of DNMT3A to HIV-1. Nonetheless, suppression of HIV-1 through epigenetic silencing required the continued treatment with GSK-J4 and was rapidly reversed after removal of the drug. DNA methylation was also rapidly lost after removal of drug, suggesting active and rapid DNA-demethylation of the HIV LTR. Thus, induction of epigenetic silencing by histone and DNA methylation appears to be insufficient to permanently silence HIV-1 proviral transcription.


Subject(s)
Benzazepines/pharmacology , DNA Methylation/drug effects , HIV-1/drug effects , Histone Demethylases/antagonists & inhibitors , Pyrimidines/pharmacology , Virus Activation/drug effects , Virus Latency/drug effects , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Proviruses/drug effects
4.
Proc Natl Acad Sci U S A ; 115(33): E7795-E7804, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061382

ABSTRACT

Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either ß-estradiol or an SERM. ß-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and ß-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.


Subject(s)
Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/agonists , HIV-1/physiology , Sex Characteristics , Transcription, Genetic/drug effects , Virus Latency/drug effects , Adult , Estrogen Receptor alpha/metabolism , Female , Humans , Jurkat Cells , Male , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
5.
J Neurovirol ; 23(1): 47-66, 2017 02.
Article in English | MEDLINE | ID: mdl-27873219

ABSTRACT

The major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT. The immortalized cells have microglia-like morphology and express key microglial surface markers including CD11b, TGFßR, and P2RY12. Importantly, these cells were confirmed to be of human origin by sequencing. The RNA expression profiles identified by RNA-seq are also characteristic of microglial cells. Furthermore, the cells demonstrate the expected migratory and phagocytic activity, and the capacity to mount an inflammatory response characteristic of primary microglia. The immortalization method has also been successfully applied to a wide range of microglia from other species (macaque, rat, and mouse). To investigate different aspects of HIV molecular regulation in CNS, the cells have been superinfected with HIV reporter viruses and latently infected clones have been selected that reactive HIV in response to inflammatory signals. The cell lines we have developed and rigorously characterized will provide an invaluable resource for the study of HIV infection in microglial cells as well as studies of microglial cell function.


Subject(s)
Antigens, Viral, Tumor/genetics , Founder Effect , Microglia/pathology , Transformation, Genetic , Adult , Animals , Antigens, Viral, Tumor/metabolism , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Brain/virology , CD11b Antigen/genetics , CD11b Antigen/metabolism , Cell Movement , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Lentivirus/genetics , Lentivirus/metabolism , Macaca , Mice , Microglia/metabolism , Microglia/virology , Phagocytosis , Primary Cell Culture , Rats , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism
6.
Viruses ; 7(5): 2210-29, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25941825

ABSTRACT

Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.


Subject(s)
Immunodeficiency Virus, Feline/chemistry , Viral Matrix Proteins/chemistry , Animals , Cats , Cell Line , Magnetic Resonance Spectroscopy , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Binding , Protein Conformation , Protein Modification, Translational , Protein Transport , Viral Matrix Proteins/metabolism
7.
Biochim Biophys Acta ; 1838(4): 1143-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24036228

ABSTRACT

The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.


Subject(s)
DNA-Binding Proteins/physiology , Endosomal Sorting Complexes Required for Transport/physiology , Immunodeficiency Virus, Feline/pathogenicity , Mutation , Peptide Fragments/physiology , Transcription Factors/physiology , Viral Envelope Proteins/physiology , Animals , Cats , Cells, Cultured , Mutagenesis, Site-Directed
8.
J Virol ; 87(6): 3561-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23325685

ABSTRACT

Incorporation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into assembling particles is crucial for virion infectivity. Genetic and biochemical data indicate that the matrix (MA) domain of Gag and the cytoplasmic tail of the transmembrane glycoprotein gp41 play an important role in coordinating Env incorporation; however, the molecular mechanism and possible role of host factors in this process remain to be defined. Recent studies suggested that Env incorporation is mediated by interactions between matrix and tail-interacting protein of 47 kDa (TIP47; also known as perilipin-3 and mannose-6-phosphate receptor-binding protein 1), a member of the perilipin, adipophilin, TIP47 (PAT) family of proteins implicated in protein sorting and lipid droplet biogenesis. We have confirmed by nuclear magnetic resonance spectroscopy titration experiments and surface plasmon resonance that MA binds TIP47. We also reevaluated the role of TIP47 in HIV-1 Env incorporation in HeLa cells and in the Jurkat T-cell line. In HeLa cells, TIP47 overexpression or RNA interference (RNAi)-mediated depletion had no significant effect on HIV-1 Env incorporation, virus release, or particle infectivity. Similarly, depletion of TIP47 in Jurkat cells did not impair HIV-1 Env incorporation, virus release, infectivity, or replication. Our results thus do not support a role for TIP47 in HIV-1 Env incorporation or virion infectivity.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Vesicular Transport Proteins/metabolism , Virus Assembly , env Gene Products, Human Immunodeficiency Virus/metabolism , HeLa Cells , Humans , Jurkat Cells , Magnetic Resonance Spectroscopy , Perilipin-3 , Surface Plasmon Resonance
9.
J Mol Biol ; 410(4): 582-608, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21762802

ABSTRACT

The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.


Subject(s)
HIV-1/metabolism , env Gene Products, Human Immunodeficiency Virus/biosynthesis , Amino Acid Sequence , HIV-1/physiology , Humans , Models, Biological , Molecular Sequence Data , Protein Transport , Virus Assembly/physiology , env Gene Products, Human Immunodeficiency Virus/chemistry
10.
Virology ; 400(1): 137-44, 2010 Apr 25.
Article in English | MEDLINE | ID: mdl-20172577

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) maturation inhibitor bevirimat disrupts virus replication by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) Gag processing intermediate to mature CA. The observation that bevirimat delays but does not completely block CA-SP1 processing suggests that the presence of uncleaved CA-SP1 may disrupt the maturation process in trans. In this study, we validate this hypothesis by using a genetic approach to demonstrate that a non-cleavable CA-SP1 mutant exerts a dominant-negative effect on maturation of wild-type HIV-1. In contrast, a mutant in which cleavage can occur internally within SP1 is significantly less potent as a dominant-negative inhibitor. We also show that bevirimat blocks processing at both the major CA-SP1 cleavage site and the internal site. These data underscore the importance of full CA-SP1 processing for HIV-1 maturation and highlight the therapeutic potential of inhibitors that target this Gag cleavage event.


Subject(s)
HIV-1/genetics , HIV-1/physiology , Amino Acid Sequence , Anti-HIV Agents/pharmacology , Capsid Proteins/genetics , Capsid Proteins/physiology , Cell Line , HIV-1/drug effects , HeLa Cells , Humans , Jurkat Cells , Molecular Sequence Data , Mutation , Protein Processing, Post-Translational , Succinates/pharmacology , Triterpenes/pharmacology , Virus Assembly , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/physiology
11.
Vet Immunol Immunopathol ; 134(1-2): 3-13, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19910057

ABSTRACT

Infection of domestic cats with virulent strains of the feline immunodeficiency virus (FIV) leads to an acquired immunodeficiency syndrome (AIDS), similar to the pathogenesis induced in humans by infection with human immunodeficiency virus type 1 (HIV-1). Thus, FIV is a highly relevant model for anti-HIV therapy and vaccine development. FIV is not infectious in humans, so it is also a potentially effective non-toxic gene therapy vector. To make better use of this model, it is important to define the cellular machinery utilized by each virus to produce virus particles so that relevant similarities can be identified. It is well understood that all replication-competent retroviruses encode gag, pol, and env genes, which provide core elements for virus replication. As a result, most antiretroviral therapy targets pol-derived enzymes (protease, reverse transcriptase, and integrase) orenv-derived glycoproteins that mediate virus attachment and entry. However, resistance to drugs against these targets is a persistent problem, and novel targets must be identified to produce more effective drugs that can either substitute or be combined with current therapy. Elements of the gag gene (matrix, capsid, nucleocapsid, and "late" domains) have yet to be exploited as antiviral targets, even though the Gag precursor polyprotein is self-sufficient for the assembly and release of virus particles from cells. This process is far better understood in primate lentiviruses, especially HIV-1. However, there has been significant progress in recent years in defining how FIV Gag is targeted to the cellular plasma membrane, assembles into virions, incorporates FIV Env glycoproteins, and utilizes host cell machinery to complete virus release. Recent discoveries of intracellular restriction factors that target HIV-1 and FIV capsids after virus entry have also opened exciting new areas of research. This review summarizes currently known interactions involving HIV-1 and FIV Gag that affect virus release, infectivity, and replication.


Subject(s)
Gene Products, gag/physiology , Host-Pathogen Interactions/physiology , Immunodeficiency Virus, Feline/physiology , Virus Assembly/physiology , Animals , Cats/virology , Feline Acquired Immunodeficiency Syndrome/virology , Virus Release/physiology
12.
J Virol ; 82(5): 2106-19, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18094166

ABSTRACT

Infection of domestic cats with feline immunodeficiency virus (FIV) is an important model system for studying human immunodeficiency virus type 1 (HIV-1) infection due to numerous similarities in pathogenesis induced by these two lentiviruses. However, many molecular aspects of FIV replication remain poorly understood. It is well established that retroviruses use short peptide motifs in Gag, known as late domains, to usurp cellular endosomal sorting machinery and promote virus release from infected cells. For example, the Pro-Thr/Ser-Ala-Pro [P(T/S)AP] motif of HIV-1 Gag interacts directly with Tsg101, a component of the endosomal sorting complex required for transport I (ESCRT-I). A Tyr-Pro-Asp-Leu (YPDL) motif in equine infectious anemia virus (EIAV), and a related sequence in HIV-1, bind the endosomal sorting factor Alix. In this study we sought to identify and characterize FIV late domain(s) and elucidate cellular machinery involved in FIV release. We determined that mutagenesis of a PSAP motif in FIV Gag, small interfering RNA-mediated knockdown of Tsg101 expression, and overexpression of a P(T/S)AP-binding fragment of Tsg101 (TSG-5') each inhibited FIV release. We also observed direct binding of FIV Gag peptides to Tsg101. In contrast, mutagenesis of a potential Alix-binding motif in FIV Gag did not affect FIV release. Similarly, expression of the HIV-1/EIAV Gag-binding domain of Alix (Alix-V) did not disrupt FIV budding, and FIV Gag peptides showed no affinity for Alix-V. Our data demonstrate that FIV relies predominantly on a Tsg101-binding PSAP motif in the C terminus of Gag to promote virus release in HeLa cells, and this budding mechanism is highly conserved in feline cells.


Subject(s)
Immunodeficiency Virus, Feline/physiology , Amino Acid Sequence , Animals , Base Sequence , Cats , Cell Line , Conserved Sequence , DNA Primers , Fluorescent Antibody Technique , Gene Products, gag/chemistry , Gene Products, gag/physiology , HeLa Cells , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , RNA, Small Interfering , Sequence Homology, Amino Acid , Virus Replication
13.
J Virol ; 79(14): 9168-79, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15994811

ABSTRACT

The orthopoxvirus serpin SPI-1 is an intracellular serine protease inhibitor that is active against cathepsin G in vitro. Rabbitpox virus (RPV) mutants with deletions of the SPI-1 gene grow on monkey kidney cells (CV-1) but do not plaque on normally permissive human lung carcinoma cells (A549). This reduced-host-range (hr) phenotype suggests that SPI-1 may interact with cellular and/or other viral proteins. We devised a genetic screen for suppressors of SPI-1 hr mutations by first introducing a mutation into SPI-1 (T309R) at residue P14 of the serpin reactive center loop. The SPI-1 T309R serpin is inactive as a protease inhibitor in vitro. Introduction of the mutation into RPV leads to the same restricted hr phenotype as deletion of the SPI-1 gene. Second-site suppressors were selected by restoration of growth of the RPV SPI-1 T309R hr mutant on A549 cells. Both intragenic and extragenic suppressors of the T309R mutation were identified. One novel intragenic suppressor mutation, T309C, restored protease inhibition by SPI-1 in vitro. Extragenic suppressor mutations were mapped by a new procedure utilizing overlapping PCR products encompassing the entire genome in conjunction with marker rescue. One suppressor mutation, which also rendered the virus temperature sensitive for growth, mapped to the DNA polymerase gene (E9L). Several other suppressors mapped to gene D5R, an NTPase required for DNA replication. These results unexpectedly suggest that the host range function of SPI-1 may be associated with viral DNA replication by an as yet unknown mechanism.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/physiology , Genes, Suppressor , Serpins/physiology , Vaccinia virus/genetics , Virus Replication , Amino Acid Sequence , Animals , Genomic Library , Humans , Molecular Sequence Data , Mutation , Open Reading Frames , Polymerase Chain Reaction , Serpins/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...