Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 24(6): 941-954, 2023 06.
Article in English | MEDLINE | ID: mdl-37095378

ABSTRACT

The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes , Immunogenicity, Vaccine
2.
Article in English | MEDLINE | ID: mdl-36754834

ABSTRACT

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) can in rare cases be an autoimmune phenomenon associated with hematologic malignancies such as chronic lymphocytic leukemia (CLL). It is unclear whether in patients with MG and CLL, the leukemic B cells are the ones directly driving the autoimmune response against neuromuscular endplates. METHODS: We identified patients with acetylcholine receptor antibody-positive (AChR+) MG and CLL or monoclonal B-cell lymphocytosis (MBL), a precursor to CLL, and described their clinical features, including treatment responses. We generated recombinant monoclonal antibodies (mAbs) corresponding to the B-cell receptors of the CLL phenotype B cells and screened them for autoantigen binding. RESULTS: A computational immune cell screen revealed a subgroup of 5/38 patients with MG and 0/21 healthy controls who displayed a CLL-like B-cell phenotype. In follow-up hematologic flow cytometry, 2 of these 5 patients were diagnosed with an MBL. An additional patient with AChR+ MG as a complication of manifest CLL presented at our neuromuscular clinic and was successfully treated with the anti-CD20 therapy obinutuzumab plus chlorambucil. We investigated the specificities of expanding CLL-like B-cell clones to assess a direct causal link between the 2 diseases. However, we observed no reactivity of the clones against the AChR, antigens at the neuromuscular junction, or other common autoantigens. DISCUSSION: Our study suggests that AChR autoantibodies are produced by nonmalignant, polyclonal B cells The new anti-CD20 treatment obinutuzumab might be considered in effectively treating AChR+ MG. CLASSIFICATION OF EVIDENCE: This is a single case study and provides Class IV evidence that obinutuzumab is safe to use in patients with MG.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Myasthenia Gravis , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Myasthenia Gravis/complications , Receptors, Cholinergic , B-Lymphocytes , Antibodies, Monoclonal , Autoantibodies , Autoantigens
3.
J Allergy Clin Immunol ; 150(2): 312-324, 2022 08.
Article in English | MEDLINE | ID: mdl-35716951

ABSTRACT

BACKGROUND: Comorbidities are risk factors for development of severe coronavirus disease 2019 (COVID-19). However, the extent to which an underlying comorbidity influences the immune response to severe acute respiratory syndrome coronavirus 2 remains unknown. OBJECTIVE: Our aim was to investigate the complex interrelations of comorbidities, the immune response, and patient outcome in COVID-19. METHODS: We used high-throughput, high-dimensional, single-cell mapping of peripheral blood leukocytes and algorithm-guided analysis. RESULTS: We discovered characteristic immune signatures associated not only with severe COVID-19 but also with the underlying medical condition. Different factors of the metabolic syndrome (obesity, hypertension, and diabetes) affected distinct immune populations, thereby additively increasing the immunodysregulatory effect when present in a single patient. Patients with disorders affecting the lung or heart, together with factors of metabolic syndrome, were clustered together, whereas immune disorder and chronic kidney disease displayed a distinct immune profile in COVID-19. In particular, severe acute respiratory syndrome coronavirus 2-infected patients with preexisting chronic kidney disease were characterized by the highest number of altered immune signatures of both lymphoid and myeloid immune branches. This overall major immune dysregulation could be the underlying mechanism for the estimated odds ratio of 16.3 for development of severe COVID-19 in this burdened cohort. CONCLUSION: The combinatorial systematic analysis of the immune signatures, comorbidities, and outcomes of patients with COVID-19 has provided the mechanistic immunologic underpinnings of comorbidity-driven patient risk and uncovered comorbidity-driven immune signatures.


Subject(s)
COVID-19 , Metabolic Syndrome , Renal Insufficiency, Chronic , Comorbidity , Humans , Immunity , Metabolic Syndrome/epidemiology , SARS-CoV-2
5.
Nat Aging ; 2(1): 74-89, 2022 01.
Article in English | MEDLINE | ID: mdl-37118354

ABSTRACT

Aging exerts profound and paradoxical effects on the immune system, at once impairing proliferation, cytotoxicity and phagocytosis, and inducing chronic inflammation. Previous studies have focused on individual tissues or cell types, while a comprehensive multisystem study of tissue-resident and circulating immune populations during aging is lacking. Here we reveal an atlas of age-related changes in the abundance and phenotype of immune cell populations across 12 mouse tissues. Using cytometry-based high parametric analysis of 37 mass-cytometry and 55 spectral flow-cytometry parameters, mapping samples from young and aged animals revealed conserved and tissue-type-specific patterns of both immune atrophy and expansion. We uncovered clear phenotypic changes in both lymphoid and myeloid lineages in aged mice, and in particular a contraction in natural killer cells and plasmacytoid dendritic cells. These changes correlated with a skewing towards myelopoiesis at the expense of early lymphocyte genesis in aged mice. Taken together, this atlas represents a comprehensive, systematic and thorough resource of the age-dependent alterations of the mammalian immune system in lymphoid, barrier and solid tissues.


Subject(s)
Killer Cells, Natural , Phagocytosis , Mice , Animals , Flow Cytometry , Inflammation , Phenotype , Mammals
6.
Sci Immunol ; 6(65): eabf3111, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797691

ABSTRACT

Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB­inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell­dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.


Subject(s)
Autoimmunity , Epithelial Cells/immunology , Forkhead Transcription Factors/immunology , Protein Serine-Threonine Kinases/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/deficiency , Thymus Gland/cytology , NF-kappaB-Inducing Kinase
7.
Sci Immunol ; 6(64): eabg9012, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678045

ABSTRACT

Psoriasis is a chronic inflammatory skin disorder underpinned by dysregulated cytokine signaling. Drugs neutralizing the common p40 subunit of interleukin-12 (IL-12) and IL-23 represented a therapeutic breakthrough; however, new drugs that block the IL-23p19 subunit and spare IL-12 are more effective, suggesting a regulatory function of IL-12. To pinpoint the cell type and underlying mechanism of IL-12­mediated immune regulation in psoriasis, we generated a conditional Il12rb2-knockout (KO)/reporter mouse strain. We detected Il12rb2 expression in T cells and a specific subset of interfollicular (IF) keratinocytes. Analysis of single-cell RNA-sequencing (scRNAseq) data from patients with psoriasis confirmed a similar expression pattern in the human skin. Deletion of Il12rb2 across the hematopoietic compartment did not alter the development of Aldara-induced psoriasiform inflammation. However, depletion of Il12rb2 in keratinocytes exacerbated disease development, phenocopying the Il12rb2 germline knockout. Protective IL-12 signaling blocked the hyperproliferation of keratinocytes, maintained skin barrier integrity, and diminished disease-driving IL-23/type 3 immune circuits. In line, specific IL-23p19 blockade led to a more profound reduction of psoriatic keratinocyte expression signatures in the skin of patients with psoriasis than combined IL-12/IL-23 inhibition. Collectively, we provide a potential explanation for the superior efficacy of IL-23p19 inhibitors in psoriasis and describe an unperceived role of IL-12 in maintaining skin epithelial cell homeostasis.


Subject(s)
Inflammation/immunology , Interleukin-12/immunology , Interleukin-23/immunology , Keratinocytes/immunology , Psoriasis/immunology , Receptors, Interleukin-12/immunology , Animals , Cell Line , Interleukin-12/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Parkinsonism Relat Disord ; 90: 57-61, 2021 09.
Article in English | MEDLINE | ID: mdl-34385008

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) is a neurodegenerative disease characterized by the deposition of disease-associated α-synuclein, which is thought to follow a sequential distribution in the human brain. Accordingly, α-Synuclein pathology affects the substantia nigra (SN) only in Braak stage 3 out of 6. Moreover, intracellular accumulation of α-synuclein follows maturation from non-ubiquitinated (p62 negative) to ubiquitinated (p62 positive) forms (Lewy bodies). Mitochondrial dysfunction is thought to be a central player in the pathogenesis of PD. It is not clear whether the nigral neurons already show mitochondrial alterations in stages preceding the deposition of α-synuclein in the SN, and how deposition of pre-aggregates or ubiquitinated mature inclusions relate to this. METHODS: Using cell-based morphometric immunohistochemistry we evaluated the volume density of mitochondrial complex-IV (COX-IV) immunoreactivity in SN neurons lacking or showing α-synuclein deposits in non-diseased individuals and those with Lewy body pathology Braak stage <3 lacking nigral α-synuclein pathology and Braak stage >3 with prominent nigral α-synuclein deposition. RESULTS: Increased volume density of COX-IV immunoreactivity appears before detectable pathological α-synuclein in nigral neurons. The volume density decreases significantly as pathological pre-aggregates of α-synuclein accumulates in the neurons and remains at a low level in neurons with p62 positive Lewy bodies. CONCLUSIONS: COX-IV expression shows a change before and during accumulation of α-synuclein in the SN underpinning the role of early mitochondrio protective therapy strategies in PD.


Subject(s)
Electron Transport Complex IV/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/metabolism , Brain/metabolism , Case-Control Studies , Humans , Lewy Bodies/metabolism , Mitochondria/metabolism , Neurons/metabolism , Organ Size , Parkinson Disease/pathology , Substantia Nigra/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology , Ubiquitination
10.
Immunity ; 54(7): 1578-1593.e5, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34051147

ABSTRACT

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/pathogenicity , Adult , Angiotensin-Converting Enzyme 2/metabolism , Antigen Presentation , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Female , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Male , Middle Aged , Natural Killer T-Cells/immunology , Pneumonia/immunology , Pneumonia/pathology , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Acta Neuropathol ; 141(6): 901-915, 2021 06.
Article in English | MEDLINE | ID: mdl-33774709

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment.


Subject(s)
Immunophenotyping/methods , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Single-Cell Analysis , T-Lymphocytes/pathology , Adult , Aged , Aged, 80 and over , Autoantibodies , Autoimmunity , B-Lymphocytes/immunology , Biomarkers , Female , Humans , Machine Learning , Male , Middle Aged , Myasthenia Gravis/blood , Receptors, Cholinergic/immunology , T-Lymphocytes/immunology , Thymectomy , Thymus Gland
12.
Eur J Immunol ; 51(7): 1799-1808, 2021 07.
Article in English | MEDLINE | ID: mdl-33759186

ABSTRACT

Mononuclear phagocytes consisting of monocytes, macrophages, and DCs play a complex role in tumor development by either promoting or restricting tumor growth. Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer arising from transformed epidermal keratinocytes. While present at high numbers, the role of tumor-infiltrating and resident myeloid cells in the formation of cSCC is largely unknown. Using transgenic mice and depleting antibodies to eliminate specific myeloid cell types in the skin, we investigated the involvement of mononuclear phagocytes in the development of UV-induced cSCC in K14-HPV8-E6 transgenic mice. Although resident Langerhans cells were enriched in the tumor, their contribution to tumor formation was negligible. Equally, dermal macrophages were dispensable for the development of cSCC. In contrast, mice lacking circulating monocytes were completely resistant to UV-induced cSCC, indicating that monocytes promote tumor development. Collectively, these results demonstrate a critical role for classical monocytes in the initiation of skin cancer.


Subject(s)
Carcinogenesis/pathology , Epidermis/pathology , Monocytes/pathology , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , Animals , Carcinogenesis/radiation effects , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epidermis/radiation effects , Female , Keratinocytes/pathology , Keratinocytes/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/radiation effects , Skin/pathology , Skin/radiation effects
13.
J Neuropathol Exp Neurol ; 80(2): 102-111, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33367843

ABSTRACT

Primary age-related tauopathy (PART) is a neurodegenerative entity defined as Alzheimer-type neurofibrillary degeneration primarily affecting the medial temporal lobe with minimal to absent amyloid-ß (Aß) plaque deposition. The extent to which PART can be differentiated pathoanatomically from Alzheimer disease (AD) is unclear. Here, we examined the regional distribution of tau pathology in a large cohort of postmortem brains (n = 914). We found an early vulnerability of the CA2 subregion of the hippocampus to neurofibrillary degeneration in PART, and semiquantitative assessment of neurofibrillary degeneration in CA2 was significantly greater than in CA1 in PART. In contrast, subjects harboring intermediate-to-high AD neuropathologic change (ADNC) displayed relative sparing of CA2 until later stages of their disease course. In addition, the CA2/CA1 ratio of neurofibrillary degeneration in PART was significantly higher than in subjects with intermediate-to-high ADNC burden. Furthermore, the distribution of tau pathology in PART diverges from the Braak NFT staging system and Braak stage does not correlate with cognitive function in PART as it does in individuals with intermediate-to-high ADNC. These findings highlight the need for a better understanding of the contribution of PART to cognitive impairment and how neurofibrillary degeneration interacts with Aß pathology in AD and PART.


Subject(s)
Aging/pathology , CA2 Region, Hippocampal/pathology , Neurons/pathology , Tauopathies/pathology , Aged , Aged, 80 and over , Aging/metabolism , Amyloid beta-Peptides/metabolism , CA2 Region, Hippocampal/metabolism , Female , Humans , Male , Middle Aged , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Tauopathies/metabolism , tau Proteins/metabolism
14.
Pathogens ; 9(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722056

ABSTRACT

Feline infectious peritonitis (FIP)-the deadliest infectious disease of young cats in shelters or catteries-is induced by highly virulent feline coronaviruses (FCoVs) emerging in infected hosts after mutations of less virulent FCoVs. Previous studies have shown that some mutations in the open reading frames (ORF) 3c and 7b and the spike (S) gene have implications for the development of FIP, but mainly indirectly, likely also due to their association with systemic spread. The aim of the present study was to determine whether FCoV detected in organs of experimentally FCoV infected healthy cats carry some of these mutations. Viral RNA isolated from different tissues of seven asymptomatic cats infected with the field strains FCoV Zu1 or FCoV Zu3 was sequenced. Deletions in the 3c gene and mutations in the 7b and S genes that have been shown to have implications for the development of FIP were not detected, suggesting that these are not essential for systemic viral dissemination. However, deletions and single nucleotide polymorphisms leading to truncations were detected in all nonstructural proteins. These were found across all analyzed ORFs, but with significantly higher frequency in ORF 7b than ORF 3a. Additionally, a previously unknown homologous recombination site was detected in FCoV Zu1.

15.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32259484

ABSTRACT

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Subject(s)
Brain/cytology , Macrophages/cytology , Microglia/cytology , Animals , Brain/metabolism , Cell Lineage , Mice , Monocytes , Signal Transduction , Transforming Growth Factor beta/metabolism
16.
JCI Insight ; 4(4)2019 02 21.
Article in English | MEDLINE | ID: mdl-30830860

ABSTRACT

GPR55, a lipid-sensing receptor, is implicated in cell cycle control, malignant cell mobilization, and tissue invasion in cancer. However, a physiological role for GPR55 is virtually unknown for any tissue type. Here, we localize GPR55 to self-renewing ductal epithelial cells and their terminally differentiated progeny in both human and mouse salivary glands. Moreover, we find GPR55 expression downregulated in salivary gland mucoepidermoid carcinomas and GPR55 reinstatement by antitumor irradiation, suggesting that GPR55 controls renegade proliferation. Indeed, GPR55 antagonism increases cell proliferation and function determination in quasiphysiological systems. In addition, Gpr55-/- mice present ~50% enlarged submandibular glands with many more granulated ducts, as well as disordered endoplasmic reticuli and with glycoprotein content. Next, we hypothesized that GPR55 could also modulate salivation and glycoprotein content by entraining differentiated excretory progeny. Accordingly, GPR55 activation facilitated glycoprotein release by itself, inducing low-amplitude Ca2+ oscillations, as well as enhancing acetylcholine-induced Ca2+ responses. Topical application of GPR55 agonists, which are ineffective in Gpr55-/- mice, into adult rodent submandibular glands increased salivation and saliva glycoprotein content. Overall, we propose that GPR55 signaling in epithelial cells ensures both the life-long renewal of ductal cells and the continuous availability of saliva and glycoproteins for oral health and food intake.


Subject(s)
Adult Stem Cells/physiology , Carcinoma, Mucoepidermoid/pathology , Cell Differentiation/physiology , Receptors, Cannabinoid/metabolism , Salivary Gland Neoplasms/pathology , Salivation/physiology , Adult , Adult Stem Cells/drug effects , Aged , Aged, 80 and over , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Carcinoma, Mucoepidermoid/radiotherapy , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cell Self Renewal/physiology , Down-Regulation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Glycoproteins/metabolism , Humans , Male , Mice , Mice, Knockout , Middle Aged , Receptors, Cannabinoid/genetics , Saliva/chemistry , Saliva/metabolism , Salivary Gland Neoplasms/radiotherapy , Salivation/drug effects , Submandibular Gland/drug effects , Submandibular Gland/metabolism , Submandibular Gland/pathology
17.
Sci Transl Med ; 10(469)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487251

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) not only is an effective treatment for several hematologic malignancies but can also result in potentially life-threatening graft-versus-host disease (GvHD). GvHD is caused by T cells within the allograft attacking nonmalignant host tissues; however, these same T cells mediate the therapeutic graft-versus-leukemia (GvL) response. Thus, there is an urgent need to understand how to mechanistically uncouple GvL from GvHD. Using preclinical models of full and partial MHC-mismatched HCT, we here show that the granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by allogeneic T cells distinguishes between the two processes. GM-CSF drives GvHD pathology by licensing donor-derived phagocytes to produce inflammatory mediators such as interleukin-1ß and reactive oxygen species. In contrast, GM-CSF did not affect allogeneic T cells or their capacity to eliminate leukemic cells, retaining undiminished GvL responses. Last, tissue biopsies and peripheral blood mononuclear cells from patients with grade IV GvHD showed an elevation of GM-CSF-producing T cells, suggesting that GM-CSF neutralization has translational potential in allo-HCT.


Subject(s)
Graft vs Host Disease/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Immunity/drug effects , Leukemia/immunology , Myeloid Cells/metabolism , Animals , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens/metabolism , Humans , Interferon-gamma/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transplantation, Homologous
19.
Neurobiol Dis ; 114: 140-152, 2018 06.
Article in English | MEDLINE | ID: mdl-29505813

ABSTRACT

Intracellular deposition of pathologically altered α-synuclein mostly in neurons characterises Parkinson's disease (PD), while its accumulation predominantly in oligodendrocytes is a feature of multiple system atrophy (MSA). Recently a prion-like spreading of pathologic α-synuclein has been suggested to play a role in the pathogenesis of PD and MSA. This implicates a role of protein processing systems, including lysosomes, supported also by genetic studies in PD. However, particularly for MSA, the mechanism of cell-to-cell propagation of α-synuclein is yet not fully understood. To evaluate the significance of lysosomal response, we systematically compared differently affected neuronal populations in PD, MSA, and non-diseased brains using morphometric immunohistochemistry (cathepsin D), double immunolabelling (cathepsin D/α-synuclein) laser confocal microscopy, and immunogold electron microscopy for the disease associated α-synuclein. We found that i) irrespective of the presence of neuronal inclusions, the volume density of cathepsin D immunoreactivity significantly increases in affected neurons of the pontine base in MSA brains; ii) volume density of cathepsin D immunoreactivity increases in nigral neurons in PD without inclusions and with non-ubiquitinated pre-aggregates of α-synuclein, but not in neurons with Lewy bodies; iii) cathepsin D immunoreactivity frequently colocalises with α-synuclein pre-aggregates in nigral neurons in PD; iv) ultrastructural observations confirm disease-associated α-synuclein in neuronal and astrocytic lysosomes in PD; v) lysosome-associated α-synuclein is observed in astroglia and rarely in oligodendroglia and in neurons in MSA. Our observations support a crucial role for the neuronal endosomal-lysosomal system in the processing of α-synuclein in PD. We suggest a distinct contribution of lysosomes to the pathogenesis of MSA, including the possibility of oligodendroglial and eventually neuronal uptake of exogenous α-synuclein in MSA.


Subject(s)
Lysosomes/metabolism , Lysosomes/pathology , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Female , Humans , Lysosomes/ultrastructure , Male , Middle Aged , Pons/metabolism , Pons/pathology , Pons/ultrastructure
20.
Sci Rep ; 7(1): 2668, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572629

ABSTRACT

Fluorescence colocalization microscopy is frequently used to assess potential links between distinct molecules; however, this method can lead to striking false-positive results and erroneous conclusions. Here we developed a novel approach with more sophisticated mathematical colocalization analyses together with visualization of physical proximity using fluorescence resonance energy transfer (FRET). To verify our results we used the proximity ligation assay (PLA). With these methods we could demonstrate that distinct neurodegeneration-related proteins either not or only rarely interact in human brain tissue.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Proteins/chemistry , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/metabolism , DNA-Binding Proteins/chemistry , Female , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , alpha-Synuclein/chemistry , tau Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...