Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Brain Behav Immun ; 114: 3-15, 2023 11.
Article in English | MEDLINE | ID: mdl-37506949

ABSTRACT

INTRODUCTION: High-inflammation subgroups of patients with psychosis demonstrate cognitive deficits and neuroanatomical alterations. Systemic inflammation assessed using IL-6 and C-reactive protein may alter functional connectivity within and between resting-state networks, but the cognitive and clinical implications of these alterations remain unknown. We aim to determine the relationships of elevated peripheral inflammation subgroups with resting-state functional networks and cognition in psychosis spectrum disorders. METHODS: Serum and resting-state fMRI were collected from psychosis probands (schizophrenia, schizoaffective, psychotic bipolar disorder) and healthy controls (HC) from the B-SNIP1 (Chicago site) study who were stratified into inflammatory subgroups based on factor and cluster analyses of 13 cytokines (HC Low n = 32, Proband Low n = 65, Proband High n = 29). Nine resting-state networks derived from independent component analysis were used to assess functional and multilayer connectivity. Inter-network connectivity was measured using Fisher z-transformation of correlation coefficients. Network organization was assessed by investigating networks of positive and negative connections separately, as well as investigating multilayer networks using both positive and negative connections. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia. Linear regressions, Spearman correlations, permutations tests and multiple comparison corrections were used for analyses in R. RESULTS: Anterior default mode network (DMNa) connectivity was significantly reduced in the Proband High compared to Proband Low (Cohen's d = -0.74, p = 0.002) and HC Low (d = -0.85, p = 0.0008) groups. Inter-network connectivity between the DMNa and the right-frontoparietal networks was lower in Proband High compared to Proband Low (d = -0.66, p = 0.004) group. Compared to Proband Low, the Proband High group had lower negative (d = 0.54, p = 0.021) and positive network (d = 0.49, p = 0.042) clustering coefficient, and lower multiplex network participation coefficient (d = -0.57, p = 0.014). Network findings in high inflammation subgroups correlate with worse verbal fluency, verbal memory, symbol coding, and overall cognition. CONCLUSION: These results expand on our understanding of the potential effects of peripheral inflammatory signatures and/or subgroups on network dysfunction in psychosis and how they relate to worse cognitive performance. Additionally, the novel multiplex approach taken in this study demonstrated how inflammation may disrupt the brain's ability to maintain healthy co-activation patterns between the resting-state networks while inhibiting certain connections between them.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Default Mode Network , Psychotic Disorders/psychology , Cognition , Magnetic Resonance Imaging , Inflammation , Brain , Brain Mapping
2.
Biol Psychiatry ; 92(5): 396-406, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35688762

ABSTRACT

BACKGROUND: Impairments of the visual system are implicated in psychotic disorders. However, studies exploring visual cortex (VC) morphology in this population are limited. Using data from the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium, we examined VC structure in psychosis probands and their first-degree relatives (RELs), sex differences in VC measures, and their relationships with cognitive and peripheral inflammatory markers. METHODS: Cortical thickness, surface area, and volume of the primary (Brodmann area 17/V1) and secondary (Brodmann area 18/V2) visual areas and the middle temporal (V5/MT) region were quantified using FreeSurfer version 6.0 in psychosis probands (n = 530), first-degree RELs (n = 544), and healthy control subjects (n = 323). Familiality estimates were determined for probands and RELs. General cognition, response inhibition, and emotion recognition functions were assessed. Systemic inflammation was measured in a subset of participants. RESULTS: Psychosis probands demonstrated significant area, thickness, and volume reductions in V1, V2, and MT, and their first-degree RELs demonstrated area and volume reductions in MT compared with control subjects. There was a higher degree of familiality for VC area than thickness. Area and volume reductions in V1 and V2 were sex dependent, affecting only female probands in a regionally specific manner. Reductions in some VC regions were correlated with poor general cognition, worse response inhibition, and increased C-reactive protein levels. CONCLUSIONS: The visual cortex is a site of significant pathology in psychotic disorders, with distinct patterns of area and thickness changes, sex-specific and regional effects, potential contributions to cognitive impairments, and association with C-reactive protein levels.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Visual Cortex , Bipolar Disorder/pathology , C-Reactive Protein , Female , Humans , Male , Psychotic Disorders/complications , Schizophrenia/pathology , Visual Cortex/diagnostic imaging
3.
Brain Behav Immun ; 100: 297-308, 2022 02.
Article in English | MEDLINE | ID: mdl-34875344

ABSTRACT

BACKGROUND: Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). METHODS: 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. RESULTS: The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1ß, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1ß and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. CONCLUSIONS: Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood-brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/therapeutic use , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/drug therapy
4.
Psychiatry Res Neuroimaging ; 309: 111249, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33484937

ABSTRACT

The thalamus, amygdala, and hippocampus play important pathophysiologic roles in psychosis. Few studies have prospectively examined subcortical nuclei in relation to predicting clinical outcomes after a first-episode of psychosis (FEP). Here, we examined volumetric differences and trajectories among subcortical nuclei in FEP patients and their associations with illness severity. Clinical and brain volume measures were collected using a 1.5T MRI scanner and processed using FreeSurfer 6.0 from a prospective study of antipsychotic-naïve FEP patients of FEP-schizophrenia (FEP-SZ) (baseline, n = 38; follow-up, n = 17), FEP non-schizophrenia (FEP-NSZ) (baseline, n = 23; follow-up, n = 13), and healthy controls (HCs) (baseline, n = 47; follow-up, n = 29). Compared to FEP-NSZ and HCs, FEP-SZ had significantly smaller thalamic anterior nuclei volume at baseline. Longitudinally, FEP-SZ showed a positive rate of change in the amygdala compared to controls or FEP-NSZ, as well as in the basal, central and accessory basal nuclei compared to FEP-NSZ. Enlargement in the thalamic anterior nuclei predicted a worsening in overall psychosis symptoms. Baseline thalamic anterior nuclei alterations further specify key subcortical regions associated with FEP-SZ pathophysiology. Longitudinally, anterior nuclei volume enlargement may signal symptomatic worsening. The amygdala and thalamus structures may show diagnostic differences between schizophrenia and non-schizophrenia psychoses, while the thalamus changes may reflect disease or treatment related changes in clinical outcome.


Subject(s)
Psychotic Disorders , Amygdala/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Longitudinal Studies , Prospective Studies , Psychotic Disorders/diagnostic imaging , Thalamus/diagnostic imaging
5.
Psychiatry Res Neuroimaging ; 308: 111234, 2021 02 28.
Article in English | MEDLINE | ID: mdl-33385763

ABSTRACT

The B-SNIP consortium identified three brain-based Biotypes across the psychosis spectrum, independent of clinical phenomenology. To externally validate the Biotype model, we used free-water fractional volume (FW) and free-water corrected fractional anisotropy (FAT) to compare white matter differences across Biotypes and clinical diagnoses. Diffusion tensor imaging data from 167 individuals were included: 41 healthy controls, 55 schizophrenia probands, 47 schizoaffective disorder probands, and 24 probands with psychotic bipolar disorder. Compared to healthy controls, FAt reductions were observed in the body of corpus callosum (BCC) for schizoaffective disorder (d = 0.91) and schizophrenia (d = 0.64). Grouping by Biotype, Biotype 1 showed FAt reductions in the CC and fornix, with largest effect in the BCC (d = 0.87). Biotype 2 showed significant FAt reductions in the BCC (d = 0.90). Schizoaffective disorder individuals had elevated FW in the CC, fornix and anterior corona radiata (ACR), with largest effect in the BCC (d = 0.79). Biotype 2 showed elevated FW in the CC, fornix and ACR, with largest effect in the BCC (d = 0.94). While significant diagnosis comparisons were observed, overall greater discrimination from healthy controls was observed for lower FAt in Biotype 1 and elevated FW in Biotype 2. However, between-group differences were modest, with one region (cerebral peduncle) showing a between-Biotype effect. No between-group effects were observed for diagnosis groupings.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , White Matter , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging , Humans , Phenotype , Psychotic Disorders/diagnostic imaging , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging
6.
Bipolar Disord ; 23(2): 130-140, 2021 03.
Article in English | MEDLINE | ID: mdl-32583570

ABSTRACT

BACKGROUND: Neurovascular abnormalities are relevant to the pathophysiology of bipolar disorder (BD), which can be assessed using cerebral blood flow (CBF) imaging. CBF alterations have been identified in BD, but studies to date have been small and inconclusive. We aimed to determine cortical gray matter CBF (GM-CBF) differences between BD and healthy controls (HC) and to identify relationships between CBF and clinical or cognitive measures. METHODS: Cortical GM-CBF maps were generated using Pseudo-Continuous Arterial Spin Labeling (pCASL) for 109 participants (BD, n = 61; HC, n = 48). We used SnPM13 to perform non-parametric voxel-wise two-sample t-tests comparing CBF between groups. We performed multiple linear regression to relate GM-CBF with clinical and cognitive measures. Analysis was adjusted for multiple comparisons with 10,000 permutations. Significance was set at a voxel level threshold of P < .001 followed by AlphaSim cluster-wise correction of P < .05. RESULTS: Compared to HCs, BD patients had greater GM-CBF in the left lateral occipital cortex, superior division and lower CBF in the right lateral occipital, angular and middle temporal gyrus. Greater GM-CBF in the left lateral occipital cortex correlated with worse working memory, verbal memory, attention and speed of processing. We found using voxel-wise regression that decreased gray matter CBF in the bilateral thalamus and cerebellum, and increased right fronto-limbic CBF were associated with worse working memory. No clusters were associated with clinical variables after FDR correction. CONCLUSIONS: Cortical GM-CBF alterations are seen in BD and may be related to cognitive function, which suggest neurovascular unit dysfunction as a possible pathophysiologic mechanism.


Subject(s)
Bipolar Disorder , Bipolar Disorder/diagnostic imaging , Cerebrovascular Circulation , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Spin Labels
7.
Mol Psychiatry ; 26(7): 3430-3443, 2021 07.
Article in English | MEDLINE | ID: mdl-33060818

ABSTRACT

Elevations in peripheral inflammatory markers have been reported in patients with psychosis. Whether this represents an inflammatory process defined by individual or subgroups of markers is unclear. Further, relationships between peripheral inflammatory marker elevations and brain structure, cognition, and clinical features of psychosis remain unclear. We hypothesized that a pattern of plasma inflammatory markers, and an inflammatory subtype established from this pattern, would be elevated across the psychosis spectrum and associated with cognition and brain structural alterations. Clinically stable psychosis probands (Schizophrenia spectrum, n = 79; Psychotic Bipolar disorder, n = 61) and matched healthy controls (HC, n = 60) were assessed for 15 peripheral inflammatory markers, cortical thickness, subcortical volume, cognition, and symptoms. A combination of unsupervised exploratory factor analysis and hierarchical clustering was used to identify inflammation subtypes. Levels of IL6, TNFα, VEGF, and CRP were significantly higher in psychosis probands compared to HCs, and there were marker-specific differences when comparing diagnostic groups. Individual and/or inflammatory marker patterns were associated with neuroimaging, cognition, and symptom measures. A higher inflammation subgroup was defined by elevations in a group of 7 markers in 36% of Probands and 20% of HCs. Probands in the elevated inflammatory marker group performed significantly worse on cognitive measures of visuo-spatial working memory and response inhibition, displayed elevated hippocampal, amygdala, putamen and thalamus volumes, and evidence of gray matter thickening compared to the proband group with low inflammatory marker levels. These findings specify the nature of peripheral inflammatory marker alterations in psychotic disorders and establish clinical, neurocognitive and neuroanatomic associations with increased inflammatory activation in psychosis. The identification of a specific subgroup of patients with inflammatory alteration provides a potential means for targeting treatment with anti-inflammatory medications.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Brain/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging
8.
Psychiatry Res Neuroimaging ; 305: 111159, 2020 11 30.
Article in English | MEDLINE | ID: mdl-32919288

ABSTRACT

Schizophrenia (SZ) is proposed as a disorder of dysconnectivity underlying cognitive impairments and clinical manifestations. Although previous studies have shown extracellular changes in white matter of first-episode SZ, little is known about the transition period towards chronicity and its association with cognition. Free-water (FW) imaging was applied to 79 early course SZ participants and 29 controls to detect white matter axonal and extracellular differences during this phase of illness. Diffusion-weighted images were collected from two sites, harmonized, and processed using a pipeline separately modeling water diffusion in tissue (FAt) and extracellular space (FW). Tract-Based Spatial Statistics was performed using the ENIGMA-DTI protocols. SZ showed FAt reductions in the posterior thalamic radiation (PTR) and FW elevations in the cingulum compared to controls, suggesting FAt and FW changes in the early course of SZ. In SZ, greater FAt of the fornix & stria terminalis (FXST) was positively associated with Theory of Mind performance; average whole-brain FAt, FAt of the FXST and the PTR were positively associated with greater working memory performance; average whole-brain FAt was positively associated with visual learning. Further studies are necessary to better understand the neurobiological mechanisms of SZ for developing intervention strategies to preserve brain structure and function.


Subject(s)
Schizophrenia , White Matter , Cognition , Diffusion Tensor Imaging/methods , Humans , Water , White Matter/diagnostic imaging
10.
Schizophr Res ; 223: 96-104, 2020 09.
Article in English | MEDLINE | ID: mdl-32507376

ABSTRACT

Subtypes of schizophrenia, constructed using clinical phenomenology to resolve illness heterogeneity, have faced criticism due to overlapping symptomatology and longitudinal instability; they were therefore dropped from the Diagnostic Statistical Manual-5. Cognitive and imaging findings comparing paranoid (P-SZ) and non-paranoid (disorganized, residual and undifferentiated; NP-SZ) schizophrenia have been limited due to small sample sizes. We assessed P-SZ and NP-SZ using symptomatology, cognition and brain structure and predicted that there would be few neurobiological differences. P-SZ (n = 237), NP-SZ (n = 127) and controls (n = 430) were included from a multi-site study. In a subset of this sample, structural imaging measures (P-SZ, n = 133; NP-SZ, n = 67; controls, n = 310) were calculated using Freesurfer 6.0. Group contrasts were run using analysis of covariance, controlling for age, sex, race and site, p-values were corrected using False Discovery Rate (FDR) and were repeated excluding the residual subtype. Compared to NP-SZ (with and without the residual subtype), P-SZ displayed fewer negative symptoms, faster speed of processing, larger bilateral hippocampus, right amygdala and their subfield volumes. Additionally, NP-SZ (with residual subtype) displayed fewer depressive symptoms and higher left transverse temporal cortical thickness (CT) but NP-SZ without residual subtype showed lower GAF scores and worse digit sequencing compared to P-SZ. No differences in positive symptoms and functioning (global or social) were detected. Subtle but significant differences were seen in cognition, symptoms, CT and subcortical volumes between P-SZ and NP-SZ. While the magnitude of these differences is not large enough to justify them as distinct categories, the paranoid- nonparanoid distinction in schizophrenia merits further investigation.


Subject(s)
Bipolar Disorder , Schizophrenia , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Phenotype , Schizophrenia/diagnostic imaging , Schizophrenia, Paranoid/diagnostic imaging
11.
Psychiatry Res ; 288: 112957, 2020 06.
Article in English | MEDLINE | ID: mdl-32325384

ABSTRACT

Visual perceptual and processing deficits are common in schizophrenia and possibly point towards visual pathway alterations. However, no studies have examined visual cortical morphology in first-episode psychosis (FEP). In an antipsychotic-naïve FEP population, we investigated primary visual (V1), association area (V2), and motion perception (V5/MT) morphology compared to controls. We found reductions in the V1 and V2 areas, greater MT area and lower MT thickness in the FEP-schizophrenia group when compared to controls. Also, lower MT thickness was associated with worse negative symptoms. Our results shed light on this poorly studied area of visual cortex morphology in FEP.


Subject(s)
Antipsychotic Agents , Psychotic Disorders/diagnostic imaging , Visual Cortex/diagnostic imaging , Visual Pathways/diagnostic imaging , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Child , Female , Humans , Male , Middle Aged , Motion Perception/physiology , Psychotic Disorders/psychology , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Young Adult
12.
Psychiatry Res Neuroimaging ; 299: 111061, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32145500

ABSTRACT

Studies utilizing optical coherence tomography (OCT) in psychosis have identified abnormalities in retinal cytoarchitecture. We aim to analyze retinal layer topography in psychosis and its correlation with clinical and imaging parameters. Macular retinal images were obtained via OCT in psychosis probands (n = 25) and healthy controls (HC, n = 15). Clinical, cognitive and structural MRI data were collected from participants. No thinning was noted for the retinal nerve fiber, ganglion cell or inner plexiform layers. We found significant thinning in the right inner temporal, right central, and left inner superior quadrants of the outer nuclear layer (ONL) in probands compared to HC. Thickening of the outer plexiform layer (OPL) was observed in the right inner temporal, left inner superior, and left inner temporal quadrants. The right inner temporal and left inner superior quadrants of both the OPL and ONL showed significant inverse correlations. Retinal pigment epithelium thinning correlated with worse mania symptoms, and thinning in the ONL was associated with worse cognitive function. ONL thinning was also associated with smaller total brain and white matter volume. Our findings suggest that outer retinal layers may provide additional insights into the pathophysiology of psychosis, possibly reflecting synaptic or inflammatory aberrations that lead to retinal pathologies.


Subject(s)
Brain/pathology , Psychotic Disorders/pathology , Retina/pathology , Female , Humans , Nerve Fibers/pathology , Tomography, Optical Coherence , Young Adult
13.
Psychol Med ; 50(12): 2057-2065, 2020 09.
Article in English | MEDLINE | ID: mdl-31451118

ABSTRACT

BACKGROUND: Neurological Examination Abnormalities (NES) are quantified by measuring subtle, partially localizable (cerebello-thalamo-prefrontal cortical circuit) and heritable neurological signs comprising sensory integration, motor coordination and complex motor sequencing that are associated with first-episode psychosis (FEP). A few studies have evaluated NES longitudinally and as a predictor for diagnostic and response classification, but these studies have been confounded, underpowered and divergent. We examined (1) baseline and longitudinal NES differences between diagnostic and year 1 response groups; (2) if NES predicts diagnostic and response groups and (3) relationships between clinical variables and NES measures in antipsychotic-naïve FEP. METHODS: NES and clinical measures were obtained for FEP-schizophrenia (FEP-SZ, n = 232), FEP non-schizophrenia (FEP-NSZ, n = 117) and healthy controls (HC, n = 204). Response groups with >25% improvement in average year 1 positive and negative symptomatology scores were classified as responsive (n = 97) and <25% improvement as non-responsive (n = 95). Analysis of covariance, NES trajectory analysis and logistic regression models assessed diagnostic and response group differences. Baseline and longitudinal NES relationships with clinical variables were performed with Spearman correlations. Data were adjusted for age, sex, race, socioeconomic status and handedness. RESULTS: Cognitive perceptual (COGPER) score was better than repetitive motor (REPMOT) at differentiating FEP-SZ from FEP-NSZ and distinguishing responders from non-responders. We identified significant group-specific associations between COGPER and worse GAF, positive and negative symptomatology and some of these findings persisted at 1-year assessment. CONCLUSION: NES are an easy to administer, bedside-elicited, endophenotypic measure and could be a cost-effective clinical tool in antipsychotic-naïve FEP.


Subject(s)
Neurologic Examination , Psychotic Disorders/physiopathology , Psychotic Disorders/psychology , Schizophrenia/diagnosis , Schizophrenia/physiopathology , Schizophrenic Psychology , Adolescent , Adult , Antipsychotic Agents/therapeutic use , Cost-Benefit Analysis , Female , Follow-Up Studies , Humans , Logistic Models , Male , Psychotic Disorders/diagnosis , Psychotic Disorders/therapy , Schizophrenia/therapy , Young Adult
14.
Schizophr Bull ; 46(1): 43-53, 2020 01 04.
Article in English | MEDLINE | ID: mdl-31112601

ABSTRACT

BACKGROUND: Schizophrenia (SZ) and bipolar disorder (BD) are characterized by reductions in gray matter and white matter. Limitations in brain imaging have led researchers to use optical coherence tomography (OCT) to explore retinal imaging biomarkers of brain pathology. We examine the retinal layers that may be associated with SZ or BD. METHODS: Articles identified using PubMed, Web of Science, Cochrane Database. Twelve studies met inclusion for acutely/chronically ill patients. We used fixed or random effects meta-analysis for probands (SZ and BD), SZ or BD eyes vs healthy control (HC) eyes. We adjusted for sources of bias, cross-validated results, and report standardized mean differences (SMD). Statistical analysis performed using meta package in R. RESULTS: Data from 820 proband eyes (SZ = 541, BD = 279) and 904 HC eyes were suitable for meta-analysis. The peripapillary retinal nerve fiber layer (RNFL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 12, SMD = -0.74, -0.51, -1.06, respectively). RNFL thinning was greatest in the nasal, temporal, and superior regions. The combined peripapillary ganglion cell layer and inner plexiform layer (GCL-IPL) showed significant thinning in SZ and BD eyes compared to HC eyes (n = 4, SMD = -0.39, -0.44, -0.28, respectively). No statistically significant differences were identified in other retinal or choroidal regions. Clinical variables were unrelated to the RNFL or GCL-IPL thickness by meta-regression. CONCLUSION: The observed retinal layer thinning is consistent with the classic gray- and white-matter atrophy observed on neuroimaging in SZ and BD patients. OCT may be a useful biomarker tool in studying the neurobiology of psychosis.


Subject(s)
Bipolar Disorder/pathology , Retina/pathology , Schizophrenia/pathology , Tomography, Optical Coherence , Bipolar Disorder/diagnostic imaging , Humans , Retina/cytology , Retina/diagnostic imaging , Schizophrenia/diagnostic imaging
15.
Transl Psychiatry ; 9(1): 230, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530798

ABSTRACT

Schizophrenia, Schizoaffective, and Bipolar disorders share behavioral and phenomenological traits, intermediate phenotypes, and some associated genetic loci with pleiotropic effects. Volumetric abnormalities in brain structures are among the intermediate phenotypes consistently reported associated with these disorders. In order to examine the genetic underpinnings of these structural brain modifications, we performed genome-wide association analyses (GWAS) on 60 quantitative structural brain MRI phenotypes in a sample of 777 subjects (483 cases and 294 controls pooled together). Genotyping was performed with the Illumina PsychChip microarray, followed by imputation to the 1000 genomes multiethnic reference panel. Enlargement of the Temporal Horns of Lateral Ventricles (THLV) is associated with an intronic SNP of the gene NRXN1 (rs12467877, P = 6.76E-10), which accounts for 4.5% of the variance in size. Enlarged THLV is associated with psychosis in this sample, and with reduction of the hippocampus and enlargement of the choroid plexus and caudate. Eight other suggestively significant associations (P < 5.5E-8) were identified with THLV and 5 other brain structures. Although rare deletions of NRXN1 have been previously associated with psychosis, this is the first report of a common SNP variant of NRXN1 associated with enlargement of the THLV in psychosis.


Subject(s)
Calcium-Binding Proteins/genetics , Lateral Ventricles/diagnostic imaging , Neural Cell Adhesion Molecules/genetics , Psychotic Disorders/genetics , Adult , Alleles , Female , Genome-Wide Association Study , Genotype , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Polymorphism, Single Nucleotide , Psychotic Disorders/diagnostic imaging , Young Adult
16.
Am J Psychiatry ; 176(7): 564-572, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31164007

ABSTRACT

OBJECTIVE: The choroid plexus is an important physiological barrier and produces CSF and neurotrophic, angiogenic, and inflammatory factors involved in brain development. Choroid plexus abnormalities have been implicated in both schizophrenia and bipolar disorder. A previous choroid plexus transcriptomic analysis of schizophrenia identified an upregulation of immune and inflammatory genes that correlated with peripheral inflammatory markers. The purpose of this study was to examine choroid plexus volume in probands across the psychosis spectrum and in their first-degree and axis II cluster A relatives, as well as choroid plexus familiality and choroid plexus covariance with clinical, cognitive, brain, and peripheral marker measures. METHODS: Choroid plexus volume was quantified (using FreeSurfer) in psychosis probands, their first-degree and axis II cluster A relatives, and healthy control subjects, organized by DSM-IV-TR diagnosis. Analyte, structural connectivity, and genotype data were collected from a subset of study subjects. RESULTS: Choroid plexus volume was significantly larger in probands compared with first-degree relatives or healthy control subjects; first-degree relatives had intermediate enlargement compared with healthy control subjects; and total choroid plexus volume was significantly heritable. Larger volume was associated with worse cognition, smaller total gray matter and amygdala volume, larger lateral ventricle volume, and lower structural connectivity in probands. Associations between larger volume and higher levels of interleukin 6 in probands was also observed. CONCLUSIONS: These findings suggest the involvement of the choroid plexus across the psychosis spectrum with a potential pathophysiological mechanism involving the neuroimmune axis, which functions in maintaining brain homeostasis and interacting with the peripheral immune and inflammatory system. The choroid plexus may be an important target in future research.


Subject(s)
Choroid Plexus/pathology , Cognition , Inflammation/pathology , Psychotic Disorders/pathology , Adult , Case-Control Studies , Choroid Plexus/diagnostic imaging , Choroid Plexus/physiopathology , Cognition/physiology , Female , Humans , Inflammation/physiopathology , Magnetic Resonance Imaging , Male , Neuroimaging , Organ Size , Phenotype , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/physiopathology
17.
Psychiatry Res Neuroimaging ; 285: 47-50, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30743074

ABSTRACT

22q11.2 Deletion Syndrome (22qDS) is a neurogenetic disorder resulting in cognitive deficits and hypogyrification, but relationships between these processes have not been established. 22qDS youth and healthy controls (HC) were administered a battery of cognitive tasks. Gyrification measurements were extracted from structural T1 scans using Freesurfer, contrasted between groups, and correlated to cognition. Data was adjusted for age, sex, socio-economic status and intracranial volume. 22qDS displayed significant hypogyrification which was associated with poorer executive functioning and verbal learning in orbitofrontal and anterior cingulate cortex. Our preliminary findings identified neurodevelopmental deficits in 22qDS shown by hypogyria, which relate to cognitive impairments.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/genetics , Adolescent , Child , Cognitive Dysfunction/psychology , Cross-Sectional Studies , DiGeorge Syndrome/psychology , Female , Humans , Male
18.
Neuroimage ; 189: 214-223, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30630078

ABSTRACT

BACKGROUND: Social cognitive ability is a significant determinant of functional outcome, and deficits in social cognition are a disabling symptom of psychotic disorders. The neurobiological underpinnings of social cognition are not well understood, hampering our ability to ameliorate these deficits. OBJECTIVE: Using 'resting state' functional magnetic resonance imaging (rsfMRI) and a trans-diagnostic, data-driven analytic strategy, we sought to identify the brain network basis of emotional intelligence, a key domain of social cognition. METHODS: The study included 60 participants with a diagnosis of schizophrenia or schizoaffective disorder and 45 healthy controls. All participants underwent a rsfMRI scan. Emotional Intelligence was measured using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). A connectome-wide analysis examined how each individual brain voxel's connectivity correlated with emotional intelligence using multivariate distance matrix regression (MDMR). RESULTS: We identified a region in the left superior parietal lobule (SPL) where individual network topology is linked to emotional intelligence. Specifically, in high scoring individuals, this region is a node of the Default Mode Network and in low scoring individuals, it is a node of the Dorsal Attention Network. This relationship was observed in both schizophrenia and healthy comparison participants. CONCLUSION: Prior studies have demonstrated individual variance in the topology of canonical resting state networks but the cognitive or behavioral relevance of these differences has largely been undetermined. We observe that the left SPL, a region of high individual variance at the cytoarchitectonic level, also demonstrates individual variance in its association with large scale resting-state networks and that network topology is linked to emotional intelligence.


Subject(s)
Brain/physiology , Connectome/methods , Emotional Intelligence/physiology , Nerve Net/physiology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Adult , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Psychotic Disorders/diagnostic imaging , Schizophrenia/diagnostic imaging
19.
Transl Psychiatry ; 8(1): 215, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30310054

ABSTRACT

Vascular endothelial growth factor A (VEGFA) dysfunction may contribute to a number of pathological processes that characterize psychotic disorders. However, the influence of VEGFA gene variants on clinical and neuroimaging phenotypes in psychotic disorders has yet to be shown. In the present study, we examined whether different VEGFA gene variants influence psychosis risk, symptom severity, cognition, and brain volume. The study group included 480 probands (Bipolar I disorder with psychosis, n = 205; Schizoaffective disorder, n = 112; Schizophrenia, n = 163) and 126 healthy controls that were recruited across six sites in the B-SNIP consortium. VEGFA variants identified for analysis (rs699947, rs833070, and rs2146323) were quantified via SNP chip array. We assessed symptoms and cognition using standardized clinical and neuropsychological batteries. The dorsolateral prefrontal cortex (DLPFC), medial temporal lobe, and hippocampal volumes were quantified using FreeSurfer. In our sample, VEGFA rs2146323 A- carriers showed reduced odds of being a proband (p = 0.037, OR = 0.65, 95% CI = 0.43-0.98) compared to noncarriers, but not for rs699947 or rs833070. In probands, rs2146323 A- carriers demonstrated fewer hallucinations (p = 0.035, Cohen's d = 0.194), as well as significantly greater DLPFC (p < 0.05, Cohen's d = -0.21) and parahippocampal volumes (p < 0.01, Cohen's d = -0.27). No clinical or neuroimaging associations were identified for rs699947 or rs833070. In general, we found that the three SNPs exhibited several significant negative relationships between psychosis symptoms and brain structure. In the probands and control groups, positive relationships were identified between several cognitive and brain volume measures. The findings suggest VEGFA effects in the DLPFC and hippocampus found in animals may also extend to humans. VEGFA variations may have important implications in identifying dimensional moderators of function that could be targeted through VEGFA-mediated interventions.


Subject(s)
Frontal Lobe/pathology , Hallucinations/genetics , Hallucinations/pathology , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Temporal Lobe/pathology , Vascular Endothelial Growth Factor A/genetics , Adult , Bipolar Disorder/complications , Female , Frontal Lobe/diagnostic imaging , Genetic Variation , Hallucinations/complications , Hallucinations/diagnostic imaging , Humans , Male , Neuropsychological Tests , Polymorphism, Single Nucleotide , Psychotic Disorders/complications , Psychotic Disorders/diagnostic imaging , Schizophrenia/complications , Temporal Lobe/diagnostic imaging
20.
J Psychiatr Res ; 101: 14-20, 2018 06.
Article in English | MEDLINE | ID: mdl-29524918

ABSTRACT

Schizophrenia (SZ) patients exhibit deficits in emotion regulation that affect their daily functioning. There is evidence that the prefrontal cortex plays an important role in emotion regulation. However, it remains unclear how this brain region is involved in emotion regulation deficits in SZ, and how such deficits impact performance on cognitively demanding tasks. We examined how happy and fearful emotional distractors impact performance on working memory (WM) tasks of varying difficulty (0-back, 2-back), and brain activity using fMRI. Participants were 20 patients with SZ and 20 healthy controls (HC) matched on age, sex, race, and IQ. A significant 3-way interaction showed that SZ patients had lower performance compared to HC when exposed to fearful and happy distractors, but only during the 2-back task. Second-level fMRI between-group analysis revealed that compared to SZ patients, HC showed significantly greater increase in brain activity with WM load in the left IFG (BA 45) when exposed to fearful distractors. Less brain activity in this region was also associated with reduction in SZ patients' performance during higher WM load and the presence of fearful distractors. SZ patients had difficulty in performing a WM task when regulating emotions, and they failed to show the emotion-specific modulation of the left IFG observed in HC. These results suggest that SZ patients have difficulty with emotion regulation demands during effortful cognitive tasks. This also provides us with potential insight on how emotion regulation could be rehabilitated in SZ using cognitive training.


Subject(s)
Emotions/physiology , Functional Neuroimaging/methods , Memory, Short-Term/physiology , Pattern Recognition, Visual/physiology , Prefrontal Cortex/physiopathology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Social Control, Formal , Adolescent , Adult , Facial Expression , Facial Recognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/diagnostic imaging , Schizophrenia/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...