Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(23): 6897-6905, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805366

ABSTRACT

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes. The coupling between these nanocrystals and other plasmonic metal nanostructures, specifically Ag nanocubes and Au films of controlled nanoscale thickness, was investigated. Al nanocrystals show excellent long-term stability under atmospheric conditions, providing a practical alternative to coinage metal-based nanowires in assembled nanoscale devices.

2.
Nanoscale ; 16(23): 11038-11051, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38691093

ABSTRACT

Reproducibility issues resulting from particle growth solutions made with cetyltrimethylammonium bromide (CTAB) surfactant from different lots and product lines in a newly developed synthesis of monometallic palladium (Pd) tetrahexahedra (THH) nanoparticles are investigated via a multi-pronged approach. Time-resolved electrochemical measurements of solution potential, variation of chemical parameters in colloidal synthesis, and correlation to electrodeposition syntheses are used together to uncover the effects of the unknown contaminants on the chemical reducing environment during nanoparticle growth. Iodide-a known impurity in commercial CTAB-is identified as one of the required components for equalizing the reducing environment across multiple CTAB sources. However, an additional component-acetone-is critical to establishing the growth kinetics necessary to enable the reproducible synthesis of THH in each of the CTAB formulations. In one CTAB variety, the powdered surfactant contains too much acetone, and drying of the as-received surfactant and re-addition of solvent is necessary for successful Pd THH synthesis. The relevance of solvent impurities to the reducing environment in aqueous nanoparticle synthesis is confirmed via electrochemical measurement approaches and solvent addition experiments. This work highlights the utility of real-time electrochemical potential measurements as a tool for benchmarking of nanoparticle syntheses and troubleshooting of reproducibility issues. The results additionally emphasize the importance of considering organic solvent impurities in powdered commercial reagents as a possible shape-determining factor during shaped nanomaterials synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...