Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Technol Cancer Res Treat ; 23: 15330338241273160, 2024.
Article in English | MEDLINE | ID: mdl-39099463

ABSTRACT

Introduction: The independent diagnostic value of inflammatory markers neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) and the diagnostic efficacy of NLR, derived neutrophil to lymphocyte ratio (dNLR), PLR, and lymphocyte-to-monocyte ratio (LMR) in glioma cases remain unclear. We investigated the correlation of preoperative peripheral blood inflammatory markers with pathological grade, Ki-67 Proliferation Index, and IDH-1 gene phenotype in patients with glioma, focusing on tumor grade and prognosis. Methods: We retrospectively analyzed the clinical, pathological, and laboratory data of 334 patients with glioma with varying grades and 345 with World Health Organization (WHO I) meningioma who underwent initial surgery at the Affiliated Hospital of Jining Medical University from December 2019 to December 2021. The diagnostic value of peripheral blood inflammatory markers for glioma was investigated. Results: The proportion of men smoking and drinking was significantly higher in the glioma group than in the meningioma group (P < .05); in contrast, the age and body mass index (Kg/m2) were significantly lower in the glioma group (P = .01). Significant differences were noted in the pathological grade (WHO II, III, and IV), Ki-67 Proliferation Index, and peripheral blood inflammatory markers such as lymphocyte median, NLR, dNLR, and PLR between the groups (P < .05). No significant correlation existed between peripheral blood inflammatory factors and IDH-1 gene mutation status or tumor location in patients with glioma (P > .05). LMR, NLR, dNLR, and PLR, varied significantly among different glioma types (P < .05). White blood cell (WBC) count, neutrophil, NLR, and dNLR correlated positively with glioma risk. Further, WBC, neutrophil, NLR, dNLR, and LMR had a high diagnostic efficiency. Conclusion: Peripheral blood inflammatory markers, serving as noninvasive biomarkers, offer high sensitivity and specificity for diagnosing glioma, differentiating it from meningioma, diagnosing GBM, and distinguishing GBM from low-grade glioma. These markers may be implemented as routine screening tools.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Neoplasm Grading , Neutrophils , Humans , Glioma/pathology , Glioma/blood , Glioma/surgery , Glioma/diagnosis , Male , Female , Prognosis , Middle Aged , Biomarkers, Tumor/blood , Neutrophils/pathology , Adult , Retrospective Studies , Brain Neoplasms/pathology , Brain Neoplasms/blood , Brain Neoplasms/surgery , Brain Neoplasms/diagnosis , Aged , Lymphocytes/pathology , Preoperative Period , Inflammation/pathology , Inflammation/blood , Blood Platelets/pathology , ROC Curve
2.
Mol Immunol ; 166: 101-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278031

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-ß is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-ß-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-ß, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.


Subject(s)
Interleukin-12 Subunit p35 , Transforming Growth Factor beta , Cytokines , Gene Expression , Interleukin-12 , Interleukin-12 Subunit p35/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Humans
3.
Brain Sci ; 14(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38248304

ABSTRACT

Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients using TCGA datasets. Proteomic analysis of glioblastoma cell lines overexpressing IL-11Rα displayed a proteome that favoured enhanced proliferation and invasion. These cells also displayed greater proliferation and migration, while the knockdown of IL-11Rα reversed these tumourigenic characteristics. In addition, these IL-11Rα overexpressing cells displayed enhanced invasion in transwell invasion assays and in 3D spheroid invasion assays, while knockdown of IL-11Rα resulted in reduced invasion. Furthermore, IL-11Rα-overexpressing cells displayed a more mesenchymal-like phenotype compared to parental cells and expressed greater levels of the mesenchymal marker Vimentin. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell proliferation, EMT, and invasion.

4.
Cells ; 13(2)2024 01 19.
Article in English | MEDLINE | ID: mdl-38275817

ABSTRACT

BACKGROUND: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. METHODS: NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. RESULTS: The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. CONCLUSIONS: These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/pathology , Neoplasm Recurrence, Local , Mice, Inbred NOD , Mice, SCID , Disease Models, Animal , Luciferases
SELECTION OF CITATIONS
SEARCH DETAIL