Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(10): 14577-14584, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163903

ABSTRACT

The ability to integrate graphene into metasurface devices has attracted enormous interest as a means of achieving dynamic electrical control of their electromagnetic response. In this manuscript, we experimentally demonstrate a graphene-integrated metasurface modulator that establishes the potential to actively control the amplitude and phase of mid-infrared light with high modulation depth and speed, in good agreement with simulation results. Our simulations also show it is possible to construct a reconfigurable surface with tunable phase profile by incorporating graphene-integrated metasurface modulators with specific geometric parameters. This reconfigurable surface is able to manipulate the orientation of the wave reflected from it, achieving a high-speed, switchable beam steering reflective interface. The results here could inspire research on dynamic reflective display and holograms.

2.
Opt Express ; 22(3): 2376-85, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663529

ABSTRACT

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cavity mode splitting is larger and smaller than the cavity mode linewidth. In both cases, coupled Q-factors up to 1600 and contrast ratios up to 10 are achieved. This design may allow for spin state readout of a self-assembled quantum dot positioned at the cavity center or function as an ultra-fast optical switch operating at the single photon level.

3.
Phys Rev Lett ; 110(3): 037402, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373950

ABSTRACT

An in-plane spin-photon interface is essential for the integration of quantum dot spins with optical circuits. The optical dipole of a quantum dot lies in the plane and the spin is optically accessed via circularly polarized selection rules. Hence, a single waveguide, which can transport only one in-plane linear polarization component, cannot communicate the spin state between two points on a chip. To overcome this issue, we introduce a spin-photon interface based on two orthogonal waveguides, where the polarization emitted by a quantum dot is mapped to a path-encoded photon. We demonstrate operation by deducing the spin using the interference of in-plane photons. A second device directly maps right and left circular polarizations to antiparallel waveguides, surprising for a nonchiral structure but consistent with an off-center dot.

4.
Sci Rep ; 3: 1239, 2013.
Article in English | MEDLINE | ID: mdl-23393621

ABSTRACT

Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.


Subject(s)
Lighting/methods , Optics and Photonics , Crystallization , Photons , Quantum Dots , Silicon/chemistry , Temperature
5.
Nano Lett ; 12(10): 5269-74, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22989367

ABSTRACT

We realize the growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy of single GaAs/GaAsP NWs demonstrates their high crystal quality and shows domination of the GaAs zinc-blende phase. Using continuous-wave and time-resolved photoluminescence (PL), we make a detailed comparison with uncapped GaAs NWs to emphasize the effect of the GaAsP capping in suppressing the nonradiative surface states. Significant PL enhancement in the core-shell structures exceeding 3 orders of magnitude at 10 K is observed; in uncapped NWs PL is quenched at 60 K, whereas single core-shell GaAs/GaAsP structures exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench.

6.
Phys Rev Lett ; 108(1): 017402, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22304289

ABSTRACT

We demonstrate coherent optical control of a single hole spin confined to an InAs/GaAs quantum dot. A superposition of hole-spin states is created by fast (10-100 ps) dissociation of a spin-polarized electron-hole pair. Full control of the hole spin is achieved by combining coherent rotations about two axes: Larmor precession of the hole spin about an external Voigt geometry magnetic field, and rotation about the optical axis due to the geometric phase shift induced by a picosecond laser pulse resonant with the hole-trion transition.

7.
Nanotechnology ; 20(5): 055204, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-19417341

ABSTRACT

Broadband superluminescent light emitting diodes are realized by a post-growth annealing process, on modulation p-doped multiple InAs/InGaAs/GaAs quantum dot layer structures, under a GaAs proximity cap. The device exhibits a large and flat emission with spectral width up to 132 nm at 2 mW. This is mainly attributed to the reduction of the energy separation between the ground state and the excited state, in addition to the optical quality of the intermixed modulation p-doped quantum dot materials being comparable to that of the as-grown sample.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Lighting/instrumentation , Luminescent Measurements/instrumentation , Nanotechnology/instrumentation , Quantum Dots , Equipment Design , Equipment Failure Analysis , Luminescent Measurements/methods , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...