Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
ACS Photonics ; 10(8): 2549-2555, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37602287

ABSTRACT

Single photon sources are fundamental building blocks for quantum communication and computing technologies. In this work, we present a device geometry consisting of gold pillars embedded in a van der Waals heterostructure of graphene, hexagonal boron nitride, and tungsten diselenide. The gold pillars serve to both generate strain and inject charge carriers, allowing us to simultaneously demonstrate the positional control and electrical pumping of a single photon emitter. Moreover, increasing the thickness of the hexagonal boron nitride tunnel barriers restricts electroluminescence but enables electrical control of the emission energy of the site-controlled single photon emitters, with measured energy shifts reaching 40 meV.

2.
ACS Photonics ; 10(4): 968-976, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37096212

ABSTRACT

Control over the shape and polarization of the beam emitted by a laser source is important in applications such as optical communications, optical manipulation and high-resolution optical imaging. In this paper, we present the inverse design of monolithic whispering-gallery nanolasers which emit along their axial direction with a tailored laser beam shape and polarization. We design and experimentally verify three types of submicron cavities, each one emitting into a different laser radiation mode: an azimuthally polarized doughnut beam, a radially polarized doughnut beam and a linearly polarized Gaussian-like beam. The measured output laser beams yield a field overlap with respect to the target mode of 92%, 96%, and 85% for the azimuthal, radial, and linearly polarized cases, respectively, thereby demonstrating the generality of the method in the design of ultracompact lasers with tailored beams.

3.
Nat Commun ; 14(1): 461, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709208

ABSTRACT

Spin defects in foils of hexagonal boron nitride are an attractive platform for magnetic field imaging, since the probe can be placed in close proximity to the target. However, as a III-V material the electron spin coherence is limited by the nuclear spin environment, with spin echo coherence times of ∽100 ns at room temperature accessible magnetic fields. We use a strong continuous microwave drive with a modulation in order to stabilize a Rabi oscillation, extending the coherence time up to ∽ 4µs, which is close to the 10 µs electron spin lifetime in our sample. We then define a protected qubit basis, and show full control of the protected qubit. The coherence times of a superposition of the protected qubit can be as high as 0.8 µs. This work establishes that boron vacancies in hexagonal boron nitride can have electron spin coherence times that are competitive with typical nitrogen vacancy centres in small nanodiamonds under ambient conditions.

4.
Nano Lett ; 22(1): 461-467, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34958574

ABSTRACT

We report optically detected magnetic resonance (ODMR) measurements of an ensemble of spin-1 negatively charged boron vacancies in hexagonal boron nitride. The photoluminescence decay rates are spin-dependent, with intersystem crossing rates of 1.02 ns-1 and 2.03 ns-1 for the mS = 0 and mS = ±1 states, respectively. Time gating the photoluminescence enhances the ODMR contrast by discriminating between different decay rates. This is particularly effective for detecting the spin of the optically excited state, where a zero-field splitting of |DES| = 2.09 GHz is measured. The magnetic field dependence of the photoluminescence exhibits dips corresponding to the ground (GSLAC) and excited-state (ESLAC) anticrossings and additional anticrossings due to coupling with nearby spin-1/2 parasitic impurities. Comparison to a model suggests that the anticrossings are mediated by the interaction with nuclear spins and allows an estimate of the ratio of the singlet to triplet spin-dependent relaxation rates of κ0/κ1 = 0.34.

5.
ACS Photonics ; 8(4): 1007-1012, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-34056033

ABSTRACT

We demonstrate the use of Stimulated Emission Depletion (STED) spectroscopy to map the electron-optical-phonon sideband of the ground state of the radiative transition of color centers in hexagonal boron nitride emitting at 2.0-2.2 eV, with in-plane linear polarization. The measurements are compared to photoluminescence of excitation (PLE) spectra that maps the electron-optical-phonon sideband of the excited state. The main qualitative difference is a red-shift in the longitudinal optical phonon peak associated with E 1u symmetry at the zone center. We compare our results to theoretical work on different defect species in hBN and find they are consistent with a carbon-based defect.

6.
J Chem Phys ; 154(2): 024704, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33445885

ABSTRACT

Strong coupling between surface plasmons and molecular excitons may lead to the formation of new hybrid states-polaritons-that are part light and part matter in character. A key signature of this strong coupling is an anti-crossing of the exciton and surface plasmon modes on a dispersion diagram. In a recent report on strong coupling between the plasmon modes of a small silver nano-rod and a molecular dye, it was shown that when the oscillator strength of the exciton is large enough, an additional anti-crossing feature may arise in the spectral region where the real part of the permittivity of the excitonic material is zero. However, the physics behind this double anti-crossing feature is still unclear. Here, we make use of extensive transfer matrix simulations to explore this phenomenon. We show that for low oscillator strengths of the excitonic resonance, there is a single anti-crossing arising from strong coupling between the surface plasmon and the excitonic resonance, which is associated with the formation of upper and lower plasmon-exciton polaritons. As the oscillator strength is increased, we find that a new mode emerges between these upper and lower polariton states and show that this new mode is an excitonic surface mode. Our study also features an exploration of the role played by the orientation of the excitonic dipole moment and the relationship between the modes we observe and the transverse and longitudinal resonances associated with the excitonic response. We also investigate why this type of double splitting is rarely observed in experiments.

7.
Nano Lett ; 20(6): 4256-4263, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32383892

ABSTRACT

We report on multicolor excitation experiments with color centers in hexagonal boron nitride at cryogenic temperatures. We demonstrate controllable optical switching between bright and dark states of color centers emitting around 2 eV. Resonant, or quasi-resonant, excitation of photoluminescence also pumps the color center, via a two-photon process, into a dark state, where it becomes trapped. Repumping back into the bright state has a step-like spectrum with a defect-dependent threshold between 2.25 and 2.6 eV. This behavior is consistent with photoionization and charging between optically bright and dark states of the defect. Furthermore, a second zero phonon line, detuned by +0.4 eV, is observed in absorption with orthogonal polarization to the emission, evidencing an additional energy level in the color center.

8.
Nanoscale Adv ; 1(2): 476-480, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-36132247

ABSTRACT

The use of Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) allows solid or liquid samples to be characterised directly without specific sample preparation. In such a system, the evanescent waves generated through total internal reflection within a crystal interact with the sample under test. In this work we explore the use of a mid-infrared metasurface to enhance the interaction between molecular vibrations and the evanescent waves. A complementary ring-resonator structure was patterned onto both silicon and SiO2/Si substrates, and the spectral properties of both devices were characterised using a FTIR-ATR system. Minima in reflectance were observed corresponding to the resonance of the metasurface on the silicon substrate, and to the hybrid resonance of phonon modes and metasurface resonances on the SiO2/Si substrate, in good agreement with simulations. Preliminary experiments were undertaken using mixtures containing trace amounts of butyl acetate diluted with oleic acid. Without the use of a metasurface, the minimum concentration of butyl acetate that could be clearly detected was 10%, whereas the use of the metasurface on the SiO2/Si substrate allowed the detection of 1% butyl acetate. This demonstrates the potential of using metasurfaces to enhance trace chemical detection in FTIR-ATR systems.

9.
Nat Commun ; 6: 8969, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26584781

ABSTRACT

Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

10.
Nano Lett ; 14(12): 6997-7002, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25381734

ABSTRACT

Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g((2)) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters.

SELECTION OF CITATIONS
SEARCH DETAIL