Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329123

ABSTRACT

While the function of many leukocytes in transplant biology has been well defined, the role of eosinophils is controversial and remains poorly explored. Conflicting data exist regarding eosinophils' role in alloimmunity. Due to their prevalence in the lung, and their defined role in other pulmonary pathologies such as asthma, we set out to explore the role of eosinophils in the long-term maintenance of the lung allograft. We noted that depletion of eosinophils results in the generation of donor-specific antibodies. Eosinophil depletion increased memory B cell, plasma cell, and antibody-secreting cell differentiation and resulted in de novo generation of follicular germinal centers. Germinal center formation depended on the expansion of CD4+Foxp3-Bcl6+CXCR5+PD-1+ T follicular helper (Tfh) cells, which increase in number after eosinophil depletion. Mechanistically, we demonstrate that eosinophils prevent Tfh cell generation by acting as the dominant source of IFN-γ in an established lung allograft, thus facilitating Th1 rather than Tfh polarization of naive CD4+ T cells. Our data thus describe what we believe is a unique and previously unknown role for eosinophils in maintaining allograft tolerance and suggest that indiscriminate administration of eosinophil-lytic corticosteroids for treatment of acute cellular rejection may inadvertently promote humoral alloimmunity.


Subject(s)
Eosinophils , Lung Transplantation , Germinal Center , Antibodies , Transplantation, Homologous , Lung Transplantation/adverse effects
2.
Cell Immunol ; 383: 104657, 2023 01.
Article in English | MEDLINE | ID: mdl-36603504

ABSTRACT

Mature IL-33 (MIL33) acting through its receptor, ST2, is known to regulate fibrosis. The precursor, full-length IL-33 (FLIL33), may function differently from MIL33 and independently of ST2. Here we report that genetic deletion of either IL-33 or ST2 attenuates pulmonary fibrosis in the bleomycin model, as does Cre-induced IL-33 deficiency in response to either acute or chronic bleomycin challenge. However, adenovirus-mediated gene delivery of FLIL33, but not MIL33, to the lungs of either wild-type or ST2-deficient mice potentiates the profibrotic effect of bleomycin without inducing a Th2 phenotype. In cultured mouse lung cells, FLIL33 overexpression induces moderate and distinct transcriptomic changes compared with a robust response induced by MIL33, whereas ST2 deletion abrogates the effects of both IL-33 forms. Thus, FLIL33 may contribute to fibrosis in an ST2-independent, Th2-independent, non-transcriptomic fashion, suggesting that pharmacological targeting of both FLIL33 and MIL33 may prove efficacious in patients with pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Interleukin-33/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Fibrosis , Bleomycin , Mice, Inbred C57BL
3.
Sci Rep ; 12(1): 14173, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986080

ABSTRACT

To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.


Subject(s)
N-Acetylneuraminic Acid , Neuraminidase , Apoptosis , Cell Differentiation , Humans , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Neutrophils/metabolism
4.
Am J Transplant ; 22(8): 1963-1975, 2022 08.
Article in English | MEDLINE | ID: mdl-35510760

ABSTRACT

Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.


Subject(s)
Interleukin-33 , Reperfusion Injury , Allografts , Animals , Immunity, Innate , Interleukin-33/metabolism , Interleukin-5/metabolism , Lung/metabolism , Lymphocytes , Mice , Reperfusion Injury/metabolism
5.
Front Immunol ; 13: 883079, 2022.
Article in English | MEDLINE | ID: mdl-35479093

ABSTRACT

Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.


Subject(s)
Immune System Diseases , Mucins , Animals , Glycoproteins/metabolism , Mammals/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism
6.
Expert Rev Respir Med ; 16(2): 235-245, 2022 02.
Article in English | MEDLINE | ID: mdl-35034567

ABSTRACT

INTRODUCTION: A major focus of interstitial lung disease (ILD) has centered on disorders termed idiopathic interstitial pneumonias (IIPs) which include, among others, idiopathic pulmonary fibrosis, idiopathic nonspecific interstitial pneumonia, cryptogenic organizing pneumonia, and respiratory bronchiolitis-interstitial lung disease. AREAS COVERED: We review the radiologic and histologic patterns for the nine disorders classified by multidisciplinary approach as IIP, and describe the remarkable amount of published epidemiologic, translational, and molecular studies demonstrating their associations with numerous yet definitive environmental exposures, occupational exposures, pulmonary diseases, systemic diseases, medication toxicities, and genetic variants. EXPERT OPINION: In the 21st century, these disorders termed IIPs are rarely idiopathic, but rather are well-described radiologic and histologic patterns of lung injury that are associated with a wide array of diverse etiologies. Accordingly, the idiopathic nomenclature is misleading and confusing, and may also promote a lack of inquisitiveness, suggesting the end rather than the beginning of a thorough diagnostic process to identify ILD etiology and initiate patient-centered management. A shift toward more etiology-focused nomenclature will be beneficial to all, including patients hoping for better life quality and disease outcome, general medicine and pulmonary physicians furthering their ILD knowledge, and expert ILD clinicians and researchers who are advancing the ILD field.


Subject(s)
Idiopathic Interstitial Pneumonias , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Radiology , Humans , Idiopathic Interstitial Pneumonias/diagnosis , Idiopathic Interstitial Pneumonias/pathology , Lung/pathology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/pathology
7.
Am J Respir Cell Mol Biol ; 66(2): 146-157, 2022 02.
Article in English | MEDLINE | ID: mdl-34668840

ABSTRACT

Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-ß in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-ß on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-ß stimulation, induced notable transcriptomic changes that negated the effects of TGF-ß, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-ß-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.


Subject(s)
Fibroblasts/metabolism , Lung/metabolism , Nuclear Proteins/physiology , Pulmonary Fibrosis/prevention & control , Smad2 Protein/metabolism , Transforming Growth Factor beta3/metabolism , Animals , Cell Cycle , Cells, Cultured , Female , Fibroblasts/pathology , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Phosphorylation , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Smad2 Protein/genetics , Transcriptome , Transforming Growth Factor beta3/genetics
8.
Respir Med ; 179: 106333, 2021 04.
Article in English | MEDLINE | ID: mdl-33676119

ABSTRACT

BACKGROUND: Multidisciplinary discussion (MDD) is widely recommended for patients with interstitial lung disease (ILD), but published primary data from MDD has been scarce, and factors influencing MDD other than chest computed tomography (CT) and lung histopathology interpretations have not been well-described. METHODS: Single institution MDD of 179 patients with ILD. RESULTS: MDD consensus clinical diagnoses included autoimmune-related ILD, chronic hypersensitivity pneumonitis, smoking-related ILD, idiopathic pulmonary fibrosis, medication-induced ILD, occupation-related ILD, unclassifiable ILD, and a few less common pulmonary disorders. In 168 of 179 patients, one or more environmental exposures or pertinent features of the medical history were identified, including recreational/avocational, residential, and occupational exposures, systemic autoimmune disease, malignancy, medication use, and family history. The MDD process demonstrated the importance of comprehensively assessing these exposures and features, beyond merely noting their presence, for rendering consensus clinical diagnoses. Precise, well-defined chest CT and lung histopathology interpretations were rendered at MDD, including usual interstitial pneumonia, nonspecific interstitial pneumonia, and organizing pneumonia, but these interpretations were associated with a variety of MDD consensus clinical diagnoses, demonstrating their nonspecific nature in many instances. In 77 patients in which MDD consensus diagnosis differed from referring diagnosis, assessment of environmental exposures and medical history was found retrospectively to be the most impactful factor. CONCLUSIONS: A comprehensive assessment of environmental exposures and pertinent features of the medical history guided MDD. In addition to rendering consensus clinical diagnoses, MDD presented clinicians with opportunities to initiate environmental remediation, behavior modification, or medication alteration likely to benefit individual patients with ILD.


Subject(s)
Consensus , Environmental Exposure/adverse effects , Interdisciplinary Communication , Lung Diseases, Interstitial , Medical History Taking , Aged , Autoimmune Diseases/complications , Female , Humans , Lung/pathology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/therapy , Male , Middle Aged , Occupational Exposure/adverse effects , Risk Factors , Smoking/adverse effects , Tomography, X-Ray Computed
9.
J Pharmacol Exp Ther ; 376(1): 136-146, 2021 01.
Article in English | MEDLINE | ID: mdl-33139318

ABSTRACT

Pulmonary fibrosis remains a serious biomedical problem with no cure and an urgent need for better therapies. Neuraminidases (NEUs), including NEU1, have been recently implicated in the mechanism of pulmonary fibrosis by us and others. We now have tested the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis. A marked alleviation of bleomycin-induced body weight loss and notable declines in accumulation of pulmonary lymphocytes and collagen deposition were observed. Real-time polymerase chain reaction analyses of human and mouse lung tissues and primary human lung fibroblast cultures were also performed. A predominant expression and pronounced elevation in the levels of NEU1 mRNA were observed in patients with idiopathic pulmonary fibrosis and bleomycin-challenged mice compared with their corresponding controls, whereas NEU2, NEU3, and NEU4 were expressed at far lower levels. The levels of mRNA for the NEU1 chaperone, protective protein/cathepsin A (PPCA), were also elevated by bleomycin. Western blotting analyses demonstrated bleomycin-induced elevations in protein expression of both NEU1 and PPCA in mouse lungs. Two known selective NEU1 inhibitors, C9-pentyl-amide-DANA (C9-BA-DANA) and C5-hexanamido-C9-acetamido-DANA, dramatically reduced bleomycin-induced loss of body weight, accumulation of pulmonary lymphocytes, and deposition of collagen. Importantly, C9-BA-DANA was therapeutic in the chronic bleomycin exposure model with no toxic effects observed within the experimental timeframe. Moreover, in the acute bleomycin model, C9-BA-DANA attenuated NEU1-mediated desialylation and shedding of the mucin-1 ectodomain. These data indicate that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases. SIGNIFICANCE STATEMENT: Neuraminidase-1-selective therapeutic targeting in the acute and chronic bleomycin models of pulmonary fibrosis reverses pulmonary collagen deposition, accumulation of lymphocytes in the lungs, and the disease-associated loss of body weight-all without observable toxic effects. Such therapy is as efficacious as nonspecific inhibition of all neuraminidases in these models, thus indicating the central role of neuraminidase-1 as well as offering a potential innovative, specifically targeted, and safe approach to treating human patients with a severe malady: pulmonary fibrosis.


Subject(s)
Enzyme Inhibitors/therapeutic use , N-Acetylneuraminic Acid/analogs & derivatives , Neuraminidase/antagonists & inhibitors , Pneumonia/drug therapy , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin/toxicity , Cells, Cultured , Enzyme Inhibitors/pharmacology , Female , Fibroblasts/metabolism , Humans , Mice , Mice, Inbred C57BL , Mucin-1/metabolism , N-Acetylneuraminic Acid/pharmacology , N-Acetylneuraminic Acid/therapeutic use , Neuraminidase/genetics , Neuraminidase/metabolism , Pneumonia/etiology , Pulmonary Fibrosis/etiology
10.
Cell Immunol ; 357: 104203, 2020 11.
Article in English | MEDLINE | ID: mdl-32977155

ABSTRACT

IL-33 has emerged as a central mediator of immune, inflammatory, and fibrotic responses. Many studies have focused on mature IL-33, but elevated expression of the precursor, full-length IL-33 (FLIL33), has also been implicated in a spectrum of diseases, including tissue fibrosis. We previously reported and now confirmed that overexpression of FLIL33 induced phosphorylation of the key profibrotic signaling mediator of TGF-ß, Smad3, in primary human lung fibroblasts from healthy donors and idiopathic pulmonary fibrosis patients. Presently, we demonstrate that FLIL33-induced Smad3 phosphorylation was not abrogated by anti-TGF-ß antibody but was abrogated by ALK5/TGFBR1-specific and Smad3-specific inhibition, indicating that FLIL33 effect was independent of TGF-ß but dependent on its receptor, TGFBR. Western blotting analyses revealed that FLIL33 overexpression increased levels, but did not affect subcellular distribution, of the AP2A1 and AP2B1 subunits of the adaptor protein complex 2 (AP2), a known TGFBR binding partner. siRNA-mediated inhibition of these subunits blocked FLIL33-induced Smad3 phosphorylation, whereas AP2 subunit overexpression induced Smad3 phosphorylation even in the absence of FLIL33. RNA-Seq transcriptomic analyses revealed that fibroblast stimulation with TGF-ß induced major changes in expression levels of numerous genes, whereas overexpression of FLIL33 induced modest expression changes in a small number of genes. Furthermore, qRT-PCR tests demonstrated that despite inducing Smad3 phosphorylation, FLIL33 did not induce collagen gene transcription and even mildly attenuated TGF-ß-induced levels of collagen I and III mRNAs. We conclude that FLIL33 induces Smad3 phosphorylation through a TGF-ß-independent but TGF-ß receptor- and AP2- dependent mechanism and has limited downstream transcriptomic consequences.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Interleukin-33/metabolism , Smad3 Protein/metabolism , Adult , Female , Fibroblasts/metabolism , Fibrosis/physiopathology , Humans , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Phosphorylation , Protein Binding , Protein Transport , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transcription, Genetic , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
11.
Sci Rep ; 10(1): 12497, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719338

ABSTRACT

Acute lung injury (ALI), a common condition in critically ill patients, has limited treatments and high mortality. Aging is a risk factor for ALI. Sirtuins (SIRTs), central regulators of the aging process, decrease during normal aging and in aging-related diseases. We recently showed decreased SIRT7 expression in lung tissues and fibroblasts from patients with pulmonary fibrosis compared to controls. To gain insight into aging-related mechanisms in ALI, we investigated the effects of SIRT7 depletion on lipopolysaccharide (LPS)-induced inflammatory responses and endothelial barrier permeability in human primary pulmonary endothelial cells. Silencing SIRT7 in pulmonary artery or microvascular endothelial cells attenuated LPS-induced increases in ICAM1, VCAM1, IL8, and IL6 and induced endomesenchymal transition (EndoMT) with decreases in VE-Cadherin and PECAM1 and increases in collagen, alpha-smooth muscle actin, TGFß receptor 1, and the transcription factor Snail. Loss of endothelial adhesion molecules was accompanied by increased F-actin stress fibers and increased endothelial barrier permeability. Together, these results show that an aging phenotype induced by SIRT7 deficiency promotes EndoMT with impaired inflammatory responses and dysfunction of the lung vascular barrier.


Subject(s)
Capillary Permeability , Endothelial Cells/pathology , Epithelium/pathology , Inflammation/metabolism , Lung/pathology , Sirtuins/deficiency , Adult , Animals , Bleomycin , Cell Membrane Permeability , Cells, Cultured , Endothelial Cells/metabolism , Gene Expression Regulation , Gene Silencing , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , NF-kappa B/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Sirtuins/genetics , Sirtuins/metabolism , Transforming Growth Factor beta/metabolism
12.
Eur Respir J ; 54(1)2019 07.
Article in English | MEDLINE | ID: mdl-31073086

ABSTRACT

BACKGROUND: Pulmonary fibrosis is one of the leading indications for lung transplantation. The disease, which is of unknown aetiology, can be progressive, resulting in distortion of the extracellular matrix (ECM), inflammation, fibrosis and eventual death. METHODS: 13 patients born to consanguineous parents from two unrelated families presenting with interstitial lung disease were clinically investigated. Nine patients developed respiratory failure and subsequently died. Molecular genetic investigations were performed on patients' whole blood or archived tissues, and cell biological investigations were performed on patient-derived fibroblasts. RESULTS: The combination of a unique pattern of early-onset lung fibrosis (at 12-15 years old) with distinctive radiological findings, including 1) traction bronchiectasis, 2) intralobular septal thickening, 3) shrinkage of the secondary pulmonary lobules mainly around the bronchovascular bundles and 4) early type 2 respiratory failure (elevated blood carbon dioxide levels), represents a novel clinical subtype of familial pulmonary fibrosis. Molecular genetic investigation of families revealed a hypomorphic variant in S100A3 and a novel truncating mutation in S100A13, both segregating with the disease in an autosomal recessive manner. Family members that were either heterozygous carriers or wild-type normal for both variants were unaffected. Analysis of patient-derived fibroblasts demonstrated significantly reduced S100A3 and S100A13 expression. Further analysis demonstrated aberrant intracellular calcium homeostasis, mitochondrial dysregulation and differential expression of ECM components. CONCLUSION: Our data demonstrate that digenic inheritance of mutations in S100A3 and S100A13 underlie the pathophysiology of pulmonary fibrosis associated with a significant reduction of both proteins, which suggests a calcium-dependent therapeutic approach for management of the disease.


Subject(s)
Lung/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/physiopathology , S100 Proteins/genetics , Adolescent , Child , Family Health , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Mutation , Pedigree , Pulmonary Fibrosis/diagnosis , Saudi Arabia
13.
Cytokine ; 119: 1-6, 2019 07.
Article in English | MEDLINE | ID: mdl-30856600

ABSTRACT

Proteolytic activation of the IL-33 precursor, full-length interleukin-33 (FLIL33), at multiple sites within the sensor domain (aa 95-109) yields several functionally mature (MIL33) forms. Unlike nuclear FLIL33, intracellular MIL33 occurs in the cytoplasm, is secreted from source cells, and exerts biological effects by activating the ST2 receptor on target cells. Previous studies and our findings in this report indicated that IL-33 forms that are substantially longer than those produced by cleavage within the sensor domain are biologically indistinguishable from classical MIL33. We utilized a series of human and mouse N-terminal FLIL33 mutants to narrow down the boundaries of the nuclear localization sequence to aa 46-67, a segment known to include a portion of the chromatin-binding motif as well as another site controlling intracellular stability of FLIL33 in an importin-5-dependent fashion. The N-terminal FLIL33 deletion mutants starting prior to this region were intranuclear, non-secreted in cell culture, and manifested modest functional activity in vivo, similar to FLIL33. By contrast, the mutants starting after this region were cytoplasmic, secreted from cells in culture, and overtly biologically active in vivo, similar to MIL33. The deletion mutants starting within this region manifested an intermediate phenotype between FLIL33 and MIL33. Thus, this segment of IL-33 molecule controls multiple aspects of its biology, including subcellular localization, extracellular secretion, and functional maturation into the longest possible form of mature IL-33 cytokine. Future anti-IL-33 therapies may be based on interfering with this segment, thus restraining extracellular release and maturation of IL-33 into the active cytokine.


Subject(s)
Interleukin-33/metabolism , Animals , Biological Transport/physiology , Cell Nucleus/metabolism , Cells, Cultured , Cytoplasm/metabolism , Humans , Mice , Mice, Inbred C57BL , Protein Binding/physiology
14.
J Biol Chem ; 294(2): 662-678, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30429216

ABSTRACT

Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.


Subject(s)
Flagellin/metabolism , Mucin-1/metabolism , Neuraminidase/metabolism , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/physiology , Animals , Female , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology , Protective Factors , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology
15.
Cell Immunol ; 325: 1-13, 2018 03.
Article in English | MEDLINE | ID: mdl-29329637

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease manifested by overtly scarred peripheral and basilar regions and more normal-appearing central lung areas. Lung tissues from macroscopically normal-appearing (IPFn) and scarred (IPFs) areas of explanted IPF lungs were analyzed by RNASeq and compared with healthy control (HC) lung tissues. There were profound transcriptomic changes in IPFn compared with HC tissues, which included elevated expression of numerous immune-, inflammation-, and extracellular matrix-related mRNAs, and these changes were similar to those observed with IPFs compared to HC. Comparing IPFn directly to IPFs, elevated expression of epithelial mucociliary mRNAs was observed in the IPFs tissues. Thus, despite the known geographic tissue heterogeneity in IPF, the entire lung is actively involved in the disease process, and demonstrates pronounced elevated expression of numerous immune-related genes. Differences between normal-appearing and scarred tissues may thus be driven by deranged epithelial homeostasis or possibly non-transcriptomic factors.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Gene Ontology , Humans , Lung/metabolism , Macrophage Activation/immunology , Primary Cell Culture , RNA, Messenger/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics
16.
Int J Hyperthermia ; 34(1): 1-10, 2018 02.
Article in English | MEDLINE | ID: mdl-28540808

ABSTRACT

BACKGROUND: As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. METHODS: We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. RESULTS: Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. CONCLUSIONS: Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Epithelium/metabolism , Fever/genetics , Fever/physiopathology , Gene Expression/genetics , Lung/metabolism , Adult , Humans , Male , Signal Transduction
17.
J Biol Chem ; 292(52): 21653-21661, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29127199

ABSTRACT

Human mature IL-33 is a member of the IL-1 family and a potent regulator of immunity through its pro-T helper cell 2 activity. Its precursor form, full-length interleukin-33 (FLIL33), is an intranuclear protein in many cell types, including fibroblasts, and its intracellular levels can change in response to stimuli. However, the mechanisms controlling the nuclear localization of FLIL33 or its stability in cells are not understood. Here, we identified importin-5 (IPO5), a member of the importin family of nuclear transport proteins, as an intracellular binding partner of FLIL33. By overexpressing various FLIL33 protein segments and variants in primary human lung fibroblasts and HEK293T cells, we show that FLIL33, but not mature interleukin-33, physically interacts with IPO5 and that this interaction localizes to a cluster of charged amino acids (positions 46-56) but not to an adjacent segment (positions 61-67) in the FLIL33 N-terminal region. siRNA-mediated IPO5 knockdown in cell culture did not affect nuclear localization of FLIL33. However, the IPO5 knockdown significantly decreased the intracellular levels of overexpressed FLIL33, reversed by treatment with the 20S proteasome inhibitor bortezomib. Furthermore, FLIL33 variants deficient in IPO5 binding remained intranuclear and exhibited decreased levels, which were also restored by the bortezomib treatment. These results indicate that the interaction between FLIL33 and IPO5 is localized to a specific segment of the FLIL33 protein, is not required for nuclear localization of FLIL33, and protects FLIL33 from proteasome-dependent degradation.


Subject(s)
Interleukin-33/metabolism , beta Karyopherins/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Cytoplasm/metabolism , HEK293 Cells , HeLa Cells , Humans , Interleukin-33/genetics , Nuclear Localization Signals/metabolism , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Proteolysis , beta Karyopherins/genetics
18.
J Immunol ; 198(10): 3869-3877, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28356385

ABSTRACT

Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-ß that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.


Subject(s)
Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Regulation , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Th17 Cells/physiology , Animals , Cell Differentiation/drug effects , Central Nervous System/immunology , Central Nervous System/physiopathology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Nuclear Proteins/deficiency , Nuclear Proteins/pharmacology , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , Th17 Cells/pathology
20.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L941-L955, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27638903

ABSTRACT

We previously showed that coincident exposure to heat shock (HS; 42°C for 2 h) and TNF-α synergistically induces apoptosis in mouse lung epithelium. We extended this work by analyzing HS effects on human lung epithelial responses to clinically relevant injury. Cotreatment with TNF-α and HS induced little caspase-3 and poly(ADP-ribose) polymerase cleavage in human small airway epithelial cells, A549 cells, and BEAS2B cells. Scratch wound closure rates almost doubled when A549 and BEAS2B cells and air-liquid interface cultures of human bronchial epithelial cells were heat shocked immediately after wounding. Microarray, qRT-PCR, and immunoblotting showed fibroblast growth factor 1 (FGF1) to be synergistically induced by HS and wounding. Enhanced FGF1 expression in HS/wounded A549 was blocked by inhibitors of p38 MAPK (SB203580) or HS factor (HSF)-1 (KNK-437) and in HSF1 knockout BEAS2B cells. PCR demonstrated FGF1 to be expressed from the two most distal promoters in wounded/HS cells. Wound closure in HS A549 and BEAS2B cells was reduced by FGF receptor-1/3 inhibition (SU-5402) or FGF1 depletion. Exogenous FGF1 accelerated A549 wound closure in the absence but not presence of HS. In the presence of exogenous FGF1, HS slowed wound closure, suggesting that it increases FGF1 expression but impairs FGF1-stimulated wound closure. Frozen sections from normal and idiopathic pulmonary fibrosis (IPF) lung were analyzed for FGF1 and HSP70 by immunofluorescence confocal microscopy and qRT-PCR. FGF1 and HSP70 mRNA levels were 7.5- and 5.9-fold higher in IPF than normal lung, and the proteins colocalized to fibroblastic foci in IPF lung. We conclude that HS signaling may have an important impact on gene expression contributing to lung injury, healing, and fibrosis.


Subject(s)
Epithelium/metabolism , Epithelium/pathology , Fibroblast Growth Factor 1/metabolism , Heat-Shock Response , Lung Injury/pathology , Animals , Apoptosis/genetics , Binding Sites , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblast Growth Factor 1/genetics , Gene Expression Regulation , HSP70 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors , Heat-Shock Response/genetics , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Lung/pathology , Lung Injury/genetics , Mice , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...