Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1381243, 2024.
Article in English | MEDLINE | ID: mdl-38817937

ABSTRACT

Reducing plant height (PH) is one of the core contents of the "Green Revolution", which began in the 1960s in wheat. A number of 27 reduced-height (Rht) genes have been identified and a great number of quantitative trait loci (QTLs) for PH have been mapped on all 21 chromosomes. Nonetheless, only several genes regulated PH have been cloned. In this study, we found the interval of QTL QPh-1B included an EST-SSR marker swes1079. According to the sequence of swes1079, we cloned the TaOSCA1.4 gene. We developed a CAPS marker to analyze the variation across a natural population. The result showed that the PH was significantly different between the two haplotypes of TaOSCA1.4-1B under most of the 12 environments and the average values of irrigation and rainfed conditions. This result further demonstrated that TaOSCA1.4 was associated with PH. Then, we validated the TaOSCA1.4 via RNAi technology. The average PHs of the wild-type (WT), RNAi lines 1 (Ri-1) and 2 (Ri-2) were 94.6, 83.6 and 79.2 cm, respectively, with significant differences between the WT and Ri-1 and Ri-2. This result indicated that the TaOSCA1.4 gene controls PH. TaOSCA1.4 is a constitutively expressed gene and its protein localizes to the cell membrane. TaOSCA1.4 gene is a member of the OSCA gene family, which regulates intracellular Ca2+ concentration. We hypothesized that knock down mutants of TaOSCA1.4 gene reduced regulatory ability of Ca2+, thus reducing the PH. Furthermore, the cell lengths of the knock down mutants are not significantly different than that of WT. We speculate that TaOSCA1.4 gene is not directly associated with gibberellin (GA), which should be a novel mechanism for a wheat Rht gene.

2.
Theor Appl Genet ; 136(5): 110, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37039971

ABSTRACT

KEY MESSAGE: KLW1 was localized to a 0.6 cM interval near the centromere of chromosome 4B and found to be dominant in conditioning longer kernels and higher kernel weight. Kernel weight is a major wheat yield component and affected by kernel dimensions, filling process and kernel density. Because of this complexity, the mechanism underlying kernel weight is still far from clear. Qtgw.nau-4B or KLW1 was a major kernel weight QTL identified in the Nanda2419 × Wangshuibai population. We showed that introduction of the Nanda2419 allele into elite cultivar Wenmai6 resulted in longer kernels as well as higher kernel weight, without affecting other traits such as spike number per plant, plant height, spike length, spikelet number per spike, and kernel number per spike. KLW1 was dominant in conditioning higher kernel weight and functioned mainly through affecting kernel length. Using F2 plants derived from KLW1 NIL, a high-density genetic map covering the QTL was constructed. KLW1 was consequently confined to the 0.6 cM Xwgrc4219-Xwgrc4067 interval by evaluating the recombinant lines in three field trials. KLW1 is complementary to KT1, the QTL on chromosome 5A of Nanda2419 for thicker and heavier kernels, in producing larger kernels with higher commercial value, augmenting its usefulness in wheat breeding.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Triticum/genetics , Plant Breeding , Chromosomes, Plant
3.
Front Plant Sci ; 13: 811668, 2022.
Article in English | MEDLINE | ID: mdl-35449885

ABSTRACT

The wheat dough quality is of great significance for the end-use of flour. Some genes have been cloned for controlling the protein fractions, grain protein content, starch synthase, grain hardness, etc. Using a unigene map of the recombinant inbred lines (RILs) for "TN 18 × LM 6," we mapped a quantitative trait locus (QTL) for dough stability time (ST) and SDS-sedimentation values (SV) on chromosome 6A (QSt/Sv-6A-2851). The peak position of the QTL covered two candidate unigenes, and we speculated that TraesCS6A02G077000 (a xylanase inhibitor protein) was the primary candidate gene (named the TaXip gene). The target loci containing the three homologous genes TaXip-6A, TaXip-6B, and TaXip-6D were edited in the variety "Fielder" by clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9). Two mutant types in the T2:3 generation were obtained (aaBBDD and AAbbdd) with about 120 plants per type. The SVs of aaBBDD, AAbbdd, and WT were 31.77, 27.30, and 20.08 ml, respectively. The SVs of the aaBBDD and AAbbdd were all significantly higher than those of the wild type (WT), and the aaBBDD was significantly higher than the AAbbdd. The STs of aaBBDD, AAbbdd, and WT were 2.60, 2.24, and 2.25 min, respectively. The ST for the aaBBDD was significantly higher than that for WT and was not significantly different between WT and AAbbdd. The above results indicated that XIP in vivo can significantly affect wheat dough quality. The selection of TaXip gene should be a new strategy for developing high-quality varieties in wheat breeding programs.

4.
PLoS One ; 12(3): e0174425, 2017.
Article in English | MEDLINE | ID: mdl-28355304

ABSTRACT

Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower.


Subject(s)
Crops, Agricultural/genetics , Genes, Plant , Plant Proteins/genetics , Protein Kinases/genetics , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Crops, Agricultural/growth & development , DNA, Plant/genetics , DNA, Plant/isolation & purification , Genetic Association Studies , Haplotypes , Phenotype , Promoter Regions, Genetic , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL