Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 10(11): 10245-10257, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27791364

ABSTRACT

Photothermal therapy (PTT) is attracting increasing interest and becoming more widely used for skin cancer therapy in the clinic, as a result of its noninvasiveness and low systemic adverse effects. However, there is an urgent need to develop biocompatible PTT agents, which enable accurate imaging, monitoring, and diagnosis. Herein, a biocompatible Gd-integrated CuS nanotheranostic agent (Gd:CuS@BSA) was synthesized via a facile and environmentally friendly biomimetic strategy, using bovine serum albumin (BSA) as a biotemplate at physiological temperature. The as-prepared Gd:CuS@BSA nanoparticles (NPs) with ultrasmall sizes (ca. 9 nm) exhibited high photothermal conversion efficiency and good photostability under near-infrared (NIR) laser irradiation. With doped Gd species and strong tunable NIR absorbance, Gd:CuS@BSA NPs demonstrate prominent tumor-contrasted imaging performance both on the photoacoustic and magnetic resonance imaging modalities. The subsequent Gd:CuS@BSA-mediated PTT result shows high therapy efficacy as a result of their potent NIR absorption and high photothermal conversion efficiency. The immune response triggered by Gd:CuS@BSA-mediated PTT is preliminarily explored. In addition, toxicity studies in vitro and in vivo verify that Gd:CuS@BSA NPs qualify as biocompatible agents. A biodistribution study demonstrated that the NPs can undergo hepatic clearance from the body. This study highlights the practicality and versatility of albumin-mediated biomimetic mineralization of a nanotheranostic agent and also suggests that bioinspired Gd:CuS@BSA NPs possess promising imaging guidance and effective tumor ablation properties, with high spatial resolution and deep tissue penetration.


Subject(s)
Magnetic Resonance Imaging , Nanocomposites , Phototherapy , Copper/chemistry , Materials Testing , Neoplasms , Tissue Distribution
2.
ACS Nano ; 10(10): 9637-9645, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27623101

ABSTRACT

Many theranostic nanomedicines (NMs) have been fabricated by packaging imaging and therapeutic moieties together. However, concerns about their potential architecture instability and pharmacokinetic complexity remain major obstacles to their clinical translation. Herein, we demonstrated the use of CuInS/ZnS quantum dots (ZCIS QDs) as "all-in-one" theranostic nanomedicines that possess intrinsic imaging and therapeutic capabilities within a well-defined nanostructure. ZCIS QDs were exploited for multispectral optical tomography (MSOT) imaging and synergistic PTT/PDT therapy. Due to the intrinsic fluorescence/MSOT imaging ability of the ZCIS QDs, their size-dependent distribution profiles were successfully visualized at tumor sites in vivo. Our results showed that the smaller nanomedicines (ZCIS NMs-25) have longer tumor retention times, higher tumor uptake, and deeper tumor penetration than the larger nanomedicines (ZCIS NMs-80). The ability of ZCIS QDs to mediate photoinduced tumor ablation was also explored. Our results verified that under a single 660 nm laser irradiation, the ZCIS NMs had simultaneous inherent photothermal and photodynamic effects, resulting in high therapy efficacy against tumors. In summary, the ZCIS QDs as "all-in-one" versatile nanomedicines allow high therapeutic efficacy as well as noninvasively monitoring tumor site localization profiles by imaging techniques and thus hold great potential as precision theranostic nanomedicines.

3.
ACS Nano ; 10(2): 2536-48, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26815933

ABSTRACT

Computed tomography (CT) contrast and radiosensitization usually increase with particle sizes of gold nanoparticles (AuNPs), but there is a huge challenge to improve both by adjusting sizes under the requirements of in vivo application. Here, we report that AuNPs have great size-dependent enhancements on CT imaging as well as radiotherapy (RT) in the size range of 3-50 nm. It is demonstrated that AuNPs with a size of ∼13 nm could simultaneously possess superior CT contrast ability and significant radioactive disruption. The Monte Carlo method is further used to evaluate this phenomenon and indicates that the inhomogeneity of gold atom distributions caused by sizes may influence secondary ionization in whole X-ray interactions. In vivo studies further indicate that this optimally sized AuNP improves real-time CT imaging and radiotherapeutic inhibition of tumors in living mice by effective accumulation at tumors with prolonged in vivo circulation times compared to clinically used small-molecule agents. These results suggest that ∼13 nm AuNPs may serve as multifunctional adjuvants for clinical X-ray theranostic application.


Subject(s)
Metal Nanoparticles/radiation effects , Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , X-Ray Therapy , Animals , Female , Gold/chemistry , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Monte Carlo Method , Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...