Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 524
Filter
1.
Biosens Bioelectron ; 259: 116385, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38759310

ABSTRACT

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.

2.
Antiviral Res ; 226: 105900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705200

ABSTRACT

BACKGROUND & AIMS: The spread of foot-and-mouth disease virus (FMDV) through aerosol droplets among cloven-hoofed ungulates in close contact is a major obstacle for successful animal husbandry. Therefore, the development of suitable mucosal vaccines, especially nasal vaccines, to block the virus at the initial site of infection is crucial. PATIENTS AND METHODS: Here, we constructed eukaryotic expression plasmids containing the T and B-cell epitopes (pTB) of FMDV in tandem with the molecular mucosal adjuvant Fms-like tyrosine kinase receptor 3 ligand (Flt3 ligand, FL) (pTB-FL). Then, the constructed plasmid was electrostatically attached to mannose-modified chitosan-coated poly(lactic-co-glycolic) acid (PLGA) nanospheres (MCS-PLGA-NPs) to obtain an active nasal vaccine targeting the mannose-receptor on the surface of antigen-presenting cells (APCs). RESULTS: The MCS-PLGA-NPs loaded with pTB-FL not only induced a local mucosal immune response, but also induced a systemic immune response in mice. More importantly, the nasal vaccine afforded an 80% protection rate against a highly virulent FMDV strain (AF72) when it was subcutaneously injected into the soles of the feet of guinea pigs. CONCLUSIONS: The nasal vaccine prepared in this study can effectively induce a cross-protective immune response against the challenge with FMDV of same serotype in animals and is promising as a potential FMDV vaccine.


Subject(s)
Administration, Intranasal , Chitosan , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Nanospheres , Polylactic Acid-Polyglycolic Acid Copolymer , Viral Vaccines , Animals , Chitosan/chemistry , Chitosan/administration & dosage , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Mice , Nanospheres/chemistry , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Nucleic Acids/administration & dosage , Immunity, Mucosal , Drug Delivery Systems
3.
Gene ; 923: 148575, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762017

ABSTRACT

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a disease characterized by a collapsed femoral head caused by the overuse of glucocorticoids. Dysfunction of bone marrow mesenchymal stem cells (BMSCs) is an important pathological feature of SONFH. In this study, we investigated whether exosomes from SHEDs (stem cells from human exfoliated deciduous teeth) have a therapeutic effect on glucocorticoid-induced inhibition of proliferation and osteogenesis in BMSCs, and elucidated the underlying mechanisms involved. METHODS: Primary dental pulp cells were isolated and cultured from human deciduous tooth pulp, SHEDs were isolated and purified by the limiting dilution method and exosomes were isolated from the supernatants of SHEDs by ultracentrifugation. The cell surface markers CD31, CD34, CD45, CD73, CD90 and CD105 were detected by flow cytometry. A Cell-Counting-Kit-8 assay was used to detect cell activity. ALP and Alizarin Red staining were used to identify osteogenic differentiation ability, and exosomes were identified using transmission electron microscopy, NanoFCM and Western blotting. PKH67 fluorescence was used to track the uptake of exosomes by BMSCs. Transcriptome analysis combined with quantitative real-time PCR was used to explore the underlying mechanism involved. RESULTS: Exosomes secreted by SHEDs can be endocytosed by BMSCs, and can partially reverse the inhibitory effects of glucocorticoids on the viability and osteogenic differentiation of BMSCs. Transcriptome sequencing analysis revealed that the differentially expressed mRNAs regulated by SHED-derived exosomes were enriched mainly in signaling pathways such as the apoptosis pathway, the PI3K-Akt signaling pathway, the Hippo signaling pathway and the p53 signaling pathway. qPCR showed that SHED-derived exosomes reversed the dexamethasone-induced upregulation of HGF and ITGB8 expression and the inhibition of EFNA1 expression, but further increased the dexamethasone-induced downregulation of IL7 expression. In conclusion, SHED-derived exosomes partially reversed the inhibitory effects of glucocorticoids on BMSC proliferation and osteogenesis by inhibiting the expression of HGF, ITGB8 and IL7, and upregulating the expression of EFNA1.

4.
BMC Genomics ; 25(1): 460, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730330

ABSTRACT

BACKGROUND: Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS: In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION: This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.


Subject(s)
Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Zingiber officinale , Zingiber officinale/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
5.
J Org Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773955

ABSTRACT

Regioselective methods to access alkylated tetrazoles still remain a challenging goal. Herein, we describe a novel regioselective protocol for N2-arylation of tetrazoles with diazo compounds using inexpensive Al(OTf)3. This reaction could be conducted under mild conditions to access a diverse array of alkylated tetrazoles with 2-substituted tetrazoles as the major products, demonstrating a comprehensive range of substrate compatibility and excellent functional group compatibility. Mechanistic studies revealed a carbene-free process in this reaction procedure. Furthermore, the scale-up reaction and transformations of the N2-arylation of tetrazole products demonstrated the potential of this strategy.

6.
Adv Sci (Weinh) ; : e2402196, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650164

ABSTRACT

Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.

7.
Org Lett ; 26(17): 3612-3616, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38656195

ABSTRACT

Switchable enantioselectivity was uncovered in the enantioselective catalytic conjugate addition of ß,γ-unsaturated α-keto esters with terminal alkynes to the chiral Lewis acid complex of In(BF4)3 and chiral phosphoric acid.

8.
Org Lett ; 26(17): 3541-3546, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38657139

ABSTRACT

Rapid and efficient construction of multifunctionalized skeletons through a one-pot multicompound domino reaction has been recognized as a simple and practical strategy. Herein, a visible-light-enabled three-component reaction of isothiocyanates, isocyanides, and thianthrenium salt-functionalized arenes is presented, which affords a facile approach to sulfur-containing trisubstituted imidazoles in good yields with a broad substrate scope and excellent functional group tolerance. The byproduct thianthrene is recovered in quantity, thereby ultimately reducing the production of chemical waste. The developed methodology has potential value for the discovery and development of thioimidazole-based drugs.

9.
Talanta ; 274: 126010, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569372

ABSTRACT

Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 µM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.


Subject(s)
Glucose , Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , HeLa Cells , Gold/chemistry , Metal Nanoparticles/chemistry , Glucose/analysis , Glucose/metabolism , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism
10.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38654452

ABSTRACT

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Subject(s)
Antifungal Agents , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Aspergillus oryzae/enzymology , Aspergillus oryzae/metabolism , Multigene Family , Triterpenes/chemistry , Triterpenes/metabolism , Cytochrome P-450 Enzyme System/metabolism
11.
Heliyon ; 10(7): e29262, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617960

ABSTRACT

Allergic rhinitis, one of the common diseases in otolaryngology, has shown an increasing incidence under the influence of various geographical, cultural and economic factors, making it a common and serious global public health problem. Modern medicine uses medication as the primary therapy for allergic rhinitis, but poor symptom control and easy relapse are the disadvantages of this treatment. However, Traditional Chinese medicine, with its long history, has treated allergic rhinitis by symptomatic treatment according to pattern differentiation with its unique insights and methods, which are effective and safe in numerous clinical studies. Therefore, this paper describes TCM decoction, acupuncture, moxibustion, acupoint application, catgut-embedding therapy and ear acupuncture in the treatment of AR. This study aims to provide more personalized and precise treatment for allergic rhinitis patients by investigating the mechanism of action, clinical research and development of traditional Chinese medicine treatments.

12.
J Inflamm (Lond) ; 21(1): 12, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644501

ABSTRACT

BACKGROUND: Interplay between systemic inflammation and programmed cell death contributes to the pathogenesis of acute lung injury (ALI). cAMP-regulated transcriptional coactivator 1 (CRTC1) has been involved in the normal function of the pulmonary system, but its role in ALI remains unclear. METHODS AND RESULTS: We generated a Crtc1 knockout (KO; Crtc1-/-) mouse line. Sepsis-induced ALI was established by cecal ligation and puncture (CLP) for 24 h. The data showed that Ctrc1 KO substantially ameliorated CLP-induced ALI phenotypes, including improved lung structure destruction, reduced pulmonary vascular permeability, diminished levels of proinflammatory cytokines and chemokines, compared with the wildtype mice. Consistently, in lipopolysaccharide (LPS)-treated RAW264.7 cells, Crtc1 knockdown significantly inhibited the expression of inflammatory effectors, including TNF-α, IL-1ß, IL-6 and CXCL1, whereas their expressions were significantly enhanced by Crtc1 overexpression. Moreover, both Crtc1 KO in mice and its knockdown in RAW264.7 cells dramatically reduced TUNEL-positive cells and the expression of pro-apoptotic proteins. In contrast, Crtc1 overexpression led to an increase in the pro-apoptotic proteins and LPS-induced TUNEL-positive cells. Mechanically, we found that the phosphorylation of Akt was significantly enhanced by Crtc1 knockout or knockdown, but suppressed by Crtc1 overexpression. Administration of Triciribine, an Akt inhibitor, substantially blocked the protection of Crtc1 knockdown on LPS-induced inflammation and cell death in RAW264.7 cells. CONCLUSIONS: Our study demonstrates that CRTC1 contribute to the pathological processes of inflammation and apoptosis in sepsis-induced ALI, and provides mechanistic insights into the molecular function of CRTC1 in the lung. Targeting CRTC1 would be a promising strategy to treat sepsis-induced ALI in clinic.

13.
Anal Chem ; 96(14): 5702-5710, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38538555

ABSTRACT

Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Chromatography
14.
J Org Chem ; 89(7): 5038-5048, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38517950

ABSTRACT

A novel method is described for the synthesis of 2,4-disubstituted oxazole and thiazole derivates via the coupling of α-diazoketones with (thio)amides or thioureas using trifluoromethanesulfonic acid (TfOH) as a catalyst. This protocol is characterized by mild reaction conditions, metal-free, and simplicity and also features good functional group tolerance, good to excellent yields, and a broad substrate scope with more than 40 examples. Experimental studies suggest a mechanism involving 2-oxo-2-phenylethyl trifluoromethanesulfonate as the key intermediate.

15.
J Nat Prod ; 87(5): 1338-1346, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38447084

ABSTRACT

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.


Subject(s)
Polyenes , Polyenes/chemistry , Polyenes/pharmacology , Molecular Structure , Talaromyces/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Respiratory Syncytial Viruses/drug effects , Humans
16.
Chem Sci ; 15(10): 3711-3720, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38455029

ABSTRACT

We herein present a strain-release glycosylation method employing a rationally designed ortho-2,2-dimethoxycarbonylcyclopropylbenzyl (CCPB) thioglycoside donor. The donor is activated through the nucleophilic ring-opening of a remotely activable donor-acceptor cyclopropane (DAC) catalyzed by mild Sc(OTf)3. Our new glycosylation method efficiently synthesizes O-, N-, and S-glycosides, providing facile chemical access to the challenging S-glycosides. Because the activation conditions of conventional glycosyl donors and our CCPB thioglycoside are orthogonal, our novel donor is amenable to controlled one-pot glycosylation reactions with conventional donors for expeditious access to complex glycans. The strain-release glycosylation is applied to the assembly of a tetrasaccharide of O-polysaccharide of Escherichia coli O-33 in one pot and the synthesis of a 1,1'-S-linked glycoside oral galectin-3 (Gal-3) inhibitor, TD139, to demonstrate the versatility and effectiveness of the novel method for constructing both O- and S-glycosides.

17.
Front Oncol ; 14: 1327046, 2024.
Article in English | MEDLINE | ID: mdl-38496759

ABSTRACT

Background: Prostate cancer invades the capsule is a key factor in selecting appropriate treatment methods. Accurate preoperative prediction of extraprostatic extension (EPE) can help achieve precise selection of treatment plans. Purpose: The aim of this study is to verify the diagnostic efficacy of tumor size, length of capsular contact (LCC), apparent diffusion coefficient (ADC), and Amide proton transfer (APT) value in predicting EPE. Additionally, the study aims to investigate the potential additional value of APT for predicting EPE. Method: This study include 47 tumor organ confined patients (age, 64.16 ± 9.18) and 50 EPE patients (age, 61.51 ± 8.82). The difference of tumor size, LCC, ADC and APT value between groups were compared. Binary logistic regression was used to screen the EPE predictors. The receiver operator characteristic curve analysis was performed to assess the diagnostic performance of variables for predicting EPE. The diagnostic efficacy of combined models (model I: ADC+LCC+tumor size; model II: APT+LCC+tumor size; and model III: APT +ADC+LCC+tumor size) were also analyzed. Results: APT, ADC, tumor size and the LCC were independent predictors of EPE. The area under the curve (AUC) of APT, ADC, tumor size and the LCC were 0.752, 0.665, 0.700 and 0.756, respectively. The AUC of model I, model II, and model III were 0.803, 0.845 and 0.869, respectively. The cutoff value of APT, ADC, tumor size and the LCC were 3.65%, 0.97×10-3mm2/s, 17.30mm and 10.78mm, respectively. The sensitivity/specificity of APT, ADC, tumor size and the LCC were 76%/89.4.0%, 80%/59.6%, 54%/78.9%, 72%/66%, respectively. The sensitivity/specificity of model I, Model II and Model III were 74%/72.3%, 82%/72.5% and 84%/80.9%, respectively. Data conclusion: Amide proton transfer imaging has added value for predicting EPE. The combination model of APT balanced the sensitivity and specificity.

18.
Org Lett ; 26(9): 1845-1850, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38408361

ABSTRACT

The difunctionalization of alkenes using aryl thianthrenium salts as the aryl sources has been reported sporadically. However, the four-component difunctionalization of alkenes on the basis of aryl thianthrenium salts has not been reported thus far and still remains a challenge. Herein, a visible light/copper catalysis-enabled four-component reaction of aryl thianthrenium salts, DABCO·(SO2)2, alkenes, and TMSN3 is presented, which affords a facile approach to ß-azidosulfones in good yields with broad substrate scope and excellent functional group tolerance. This strategy indirectly realizes the method for the synthesis of ß-azidosulfones through site-selective aryl C-H bond functionalization and alkene difunctionalization. This developed method is an important complement to thianthrenium salts chemistry.

19.
Neurosurgery ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38391200

ABSTRACT

BACKGROUND AND OBJECTIVES: Grading systems, including the novel brain arteriovenous malformation endovascular grading scale (NBAVMES) and arteriovenous malformation embocure score (AVMES), predict embolization outcomes based on arteriovenous malformation (AVM) morphological features. The influence of hemodynamics on embolization outcomes remains unexplored. In this study, we investigated the relationship between hemodynamics and embolization outcomes. METHODS: We conducted a retrospective study of 99 consecutive patients who underwent transarterial embolization at our institution between 2012 and 2018. Hemodynamic features of AVMs were derived from pre-embolization digital subtraction angiography sequences using quantitative digital subtraction angiography. Multivariate logistic regression analysis was performed to determine the significant factors associated with embolization outcomes. RESULTS: Complete embolization (CE) was achieved in 17 (17.2%) patients, and near-complete embolization was achieved in 18 (18.2%) patients. A slower transnidal relative velocity (TRV, odds ratio [OR] = 0.71, P = .002) was significantly associated with CE. Moreover, higher stasis index of the drainage vein (OR = 16.53, P = .023), shorter transnidal time (OR = 0.15, P = .013), and slower TRV (OR = 0.9, P = .049) were significantly associated with complete or near-complete embolization (C/nCE). The area under the receiver operating characteristic curve for predicting CE was 0.87 for TRV, 0.72 for NBAVMES scores (ρ = 0.287, P = .004), and 0.76 for AVMES scores. The area under the receiver operating characteristic curve for predicting C/nCE was 0.77 for TRV, 0.61 for NBAVMES scores, and 0.75 for AVMES scores. Significant Spearman correlation was observed between TRV and NBAVMES scores and AVMES scores (ρ = 0.512, P < .001). CONCLUSION: Preoperative hemodynamic factors have the potential to predict the outcomes of AVM embolization. A higher stasis index of the drainage vein, slower TRV, and shorter transnidal time may indicate a moderate blood flow status or favorable AVM characteristics that can potentially facilitate embolization.

20.
Nat Prod Res ; : 1-6, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329014

ABSTRACT

Three new griseofulvin derivatives, griseofulvinoside A-C (1-3), were isolated from the ethyl acetate extract of the solid fermentation product of Aureobasidium pullulans. Their structures were elucidated based on extensive spectroscopic data analysis of MS, 1D and 2D NMR. The antifungal activities of new compounds were evaluated against four phytopathogenic fungi in vitro, and all test compounds demonstrated inhibitory effects. Among them, compound 2 exhibited the most potent activities against the four selected phytopathogenic fungi with inhibitory rates ranging from 40.2 to 75.8% at 0.2 mg/mL.

SELECTION OF CITATIONS
SEARCH DETAIL
...