Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 242: 116026, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367519

ABSTRACT

PURPOSE: Accurate quantifying of drug-related compounds in medicines is vital for safety. Commonly used structure-dependent methods rely on analytical standards. High-performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) offers a promising solution, being structure-independent and not requiring standards. In this study, we aim to develop HPLC-ICP-MS methods for the determination of related compounds in oxaliplatin and ioversol injections. RESULTS: The target analytes were eluted on an XSelect HSS T3 column (2.1 ×50 mm, 5 µm). Specifically, oxaliplatin injection was eluted isocracially for 3.5 min, and ioversol injection was eluted gradient with a total chromatographic run time of 12 min. The measurements to determine dihydroxy oxaliplatin-Pt(IV) and two related compounds of ioversol were performed by monitoring at m/z for 195Pt and 127I, respectively. The calibration curves were established over the range of 0.05-1 µM for Pt and 0.3-15 µM for I with the correlation coefficients greater than 0.999. The limits of quantification were 0.004 µM for dihydroxy oxaliplatin-Pt(IV), 0.022 µM for ioversol related compound A and 0.026 µM for ioversol related compound B. The accuracy (recovery between 93-105%) and precision (repeatability ≤ 6.1% RSD) were fit-for-purpose for dihydroxy oxaliplatin-Pt(IV), and the accuracy (recovery between 95-107%) and precision (repeatability ≤ 3.9% RSD) were also fit-for-purpose for both ioversol related compound A and ioversol related compound B. CONCLUSION: The quantitation accuracy of HPLC-ICP-MS closely matched that of the standard HPLC-UV approach. HPLC-ICP-MS can be used as a complementary analytical technique for quantitative determination of drug-related compounds.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Triiodobenzoic Acids , Oxaliplatin , Chromatography, High Pressure Liquid/methods , Drug Compounding
2.
J Pharm Biomed Anal ; 239: 115928, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38134705

ABSTRACT

Bacterial infection is a leading cause of neonatal death. Ceftazidime, commonly used for neonatal infections, is often used off-label. Blood sampling limits pharmacokinetic (PK) studies in neonatal patients. The dried blood spots (DBS) are a potential matrix for microsampling. Herein, we describe an ultra-performance liquid chromatography with a photodiode array (UPLC-PDA) to determine ceftazidime in DBS from neonatal patients in support of pharmacokinetic studies. The Capitainer® device-based DBS samples containing 10 µL blood were extracted in 70% methanol/water (v/v) with acetaminophen as the internal standard (IS). The extraction process was carried out at 20 °C using a block bath shaker at 1000 rpm for 30 min. The extracted ceftazidime was subsequently eluted through an Acquity UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm). Elution was achieved using a water (containing 0.1% trifluoroacetic acid)/acetonitrile linear gradient at a flow rate of 0.5 mL/min, and the analytical time was 3.2 min. The PDA detection wavelength was set at 259 nm. The method underwent thorough validation following the recommendation of the European Bioanalysis Forum (EBF) and the bioanalytical guideline established by the European Medicines Agency (EMA). No interfering peaks were detected at the retention times of ceftazidime and IS. The ceftazidime exhibited a quantification range spanning from 0.5 to 200 µg/mL, and the assay demonstrated good accuracy (intra/inter-assay ranging from 90.1% to 104.8%) and precision (intra/inter-assay coefficient of variations ranging from 4.8% to 11.7%). The method's applicability was demonstrated by analyzing clinical DBS samples collected from neonatal patients.


Subject(s)
Ceftazidime , Water , Infant, Newborn , Humans , Chromatography, High Pressure Liquid/methods , Dried Blood Spot Testing/methods
3.
Anticancer Agents Med Chem ; 23(11): 1265-1283, 2023.
Article in English | MEDLINE | ID: mdl-36825723

ABSTRACT

Chalcones are members of the flavonoid family and act as intermediates in the biosynthesis of flavonoids, which are widespread in plants. Meanwhile, chalcones are important precursors for synthetic manipulations and act as mediators in the synthesis of useful therapeutic compounds, which have demonstrated a wide range of biological activities. Numerous studies have reported the synthesis and medicinal significance of chalcone derivatives. Cancer is one of the major causes of death worldwide. Although various therapies have been proposed for diverse types of cancer, their associated limitations and side effects urged researchers to develop more safe, potent and selective anticancer agents. Based on the literature review, the presence of chalcone derivatives as the main component, a substituent, or a side-chain in different biologically active compounds could serve as a reliable platform for synthetic organic chemists to synthesize new compounds bearing this moiety, owing to their similar or superior activities compared to those of the standards. The diversity of the chalcone family also lends itself to broad-spectrum biological applications in oncology. This review, therefore, sheds light on the latest structure and the anticancer potency of different synthetics (bearing other anticancer pharmacophores based on simple, functional groups, and dimer chalcone derivatives) and natural chalcone hybrids. It is confirmed that the information compiled in this review article, many chalcone hybrids have been found with promising anticancer activities. Therefore, this review may be convenient for designing novel chalcone molecules with enhanced medicinal properties according to the structure of the compounds.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Neoplasms , Humans , Chalcone/pharmacology , Chalcones/chemistry , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
4.
Bioorg Med Chem ; 69: 116916, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35792403

ABSTRACT

Microglia-induced neuroinflammation plays a critical role in neurological diseases. At present, RIPK2 is considered to participate in inflammatory and autoimmune cellular pathways and diseases. RIPK2 is found to be a pivotal therapeutic target in neurologic disorders related to inflammation. In our research, we discovered the protective function of tunicatachalcone (TC) against neuroinflammation. TC is a natural chalcone compound derived from Pongamia pinnata, a medicinal plant. The results revealed that TC (5-20 µM) ameliorated the activation of BV-2 microglia induced by lipopolysaccharide (LPS) in a dose-dependent way, which was proved by the reduced production of inflammation-related mediators. By using SPR-LC-MS/MS analysis, we revealed the potent inhibitory function of TC against neuroinflammation mediated by microglia via targeting RIPK2. A strong binding between TC and RIPK2 was further demonstrated based on the results of SPR, MST and molecular modeling. Through applying mRNA transcriptomics and bioinformatics analysis, it was demonstrated that TC could mediate RIPK2-dependent gene transcription to exert the neuroprotective effect. In summary, our research presented that RIPK2 was a possible therapeutic target of TC.


Subject(s)
Biological Products , Microglia , Biological Products/pharmacology , Chromatography, Liquid , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Neuroinflammatory Diseases , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/pharmacology , Tandem Mass Spectrometry
5.
J Biochem ; 169(1): 65-73, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33084863

ABSTRACT

Circular RNAs (circRNAs) are important regulators in various cancers. Previous studies have found that hsa_circ_0102231 is an oncogene in lung adenocarcinoma. Here, we investigated its mechanism in the development of non-small cell lung cancer (NSCLC). We detected the levels of hsa_circ_0102231 in five NSCLC cell lines and one normal bronchial epithelium cell line. The interaction between hsa_circ_0102231 and miR-145 was predicted and confirmed by pull-down and luciferase assays. The nuclear mass separation assay and fluorescence in situ hybridization were used to detect the distribution of hsa_circ_0102231. Cell Counting Kit-8 and Transwell assays were used to assess the cell proliferative and invasive ability. Western blot and RT-qPCR, respectively, detected the protein and mRNA levels of RBBP4. The RBBP4 promoter activity was detected with a luciferase assay. We found that hsa_circ_0102231 level was higher in NSCLC cells. hsa_circ_0102231 is mainly localized to the cytoplasm. hsa_circ_0102231 promotes NSCLC cell proliferation and invasion by sponge for miR-145. miR-145 significantly decreases the RBBP4 promoter activity, and its mRNA and protein levels. RBBP4 is an oncogene to promote proliferation and invasion ability. Our findings suggest that hsa_circ_0102231 promotes proliferation and invasion by mediating the miR-145/RBBP4 axis in NSCLC, indicating that it might be a potential target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Lung Neoplasms/pathology , MicroRNAs/metabolism , RNA, Circular/metabolism , Retinoblastoma-Binding Protein 4/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Gene Knockdown Techniques , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/genetics , Neoplasm Invasiveness , Oncogenes , RNA, Circular/genetics , Retinoblastoma-Binding Protein 4/genetics , Up-Regulation
6.
Oncol Rep ; 33(6): 2797-806, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25962898

ABSTRACT

Using tissue block culture techniques, we established a new human tumor cell line derived from adenoid cystic carcinoma of the lacrimal glands (LACC-1). The LACC-1 cell line was successfully subcultured for more than 100 passages during the last two years. The outgrowth of cells was observed by day 5 after seeding, and then the cells were generated slowly. The first passage proceeded by day 32, and the classical epithelioid cell colonies formed by day 69 after inoculation. After eight passages, homogeneous epithelioid tumor cells appeared when we combined continuous passage, mechanical scraping, repeated adherence, and dissociation methods to remove the fibroblast cells. LACC-1 cells appeared as a histologically solid pattern and continuous passage culture. The population doubling time was approximately 37.1 h. LACC-1 cells appeared as an epithelioid monolayer culture on the cell culture flask and presented with a cobblestone-like appearance when they reached confluency. The nucleus was large and round with many abnormal mitoses. The nucleoplasm ratio was high. Multinucleated tumor giant cells appeared. LACC-1 cells showed a tendency to have overlapping growth without contact inhibition when the cell density continued to increase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the LACC-1 cells were malignant tumor cells that were poorly differentiated. The surface of the LACC-1 cells exhibited affluent microvilli, protuberances and filopodia under SEM. The no. 84 generation LACC-1 cell line was inoculated subcutaneously into the subaxillary of nude mice and the tumorigenic potential was evident. The formation rate of the transplanted tumors was 100% at day 7 after inoculation. This finding showed that the LACC-1 cell line was malignant with tumorigenic ability. The xenograft tumors retained the same histological characteristics of a solid pattern as the LACC-1 original tumor after inoculation for 49 days. Under TEM observation, the xenograft tumor cells had the same ultrastructure as the LACC-1 cells. Immunohistochemical examination revealed the similarity of both cytoskeletal proteins (e.g., cytokeratin, vimentin, desmin and α-SMA) and S-100 expression in the original tumor, LACC-1 cells and xenograft tumors. Immunoreactivity of these proteins was gradually decreased in these three tissues. Reverse transcription-polymerase chain reaction demonstrated that the xenograft tumors originated from the human. Based on these results, the LACC-1 cell line provides a useful model for studying the biological characteristics of human ACC of the lacrimal glands.


Subject(s)
Carcinoma, Adenoid Cystic/pathology , Cell Line, Tumor , Lacrimal Apparatus/pathology , Animals , Cell Culture Techniques , Disease Models, Animal , Humans , Mice , Mice, Nude , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...