Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genet ; 143(3): 343-355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480539

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent diagnosed cancer in men and second most prevalent cancer in women. H3K27ac alterations are more commonly than gene mutations in colorectal cancer. Most colorectal cancer genes have significant H3K27ac changes, which leads to an over-expression disorder in gene transcription. Over-expression of STEAP3 is involved in a variety of tumors, participating in the regulation of cancer cell proliferation and migration. The purpose of this work is to investigate the role of STEAP3 in the regulation of histone modification (H3K27ac) expression in colon cancer. Bioinformatic ChIP-seq, ChIP-qPCR and ATAC-seq were used to analyze the histone modification properties and gene accessibility of STEAP3. Western blot and qRT-PCR were used to evaluate relative protein and gene expression, respectively. CRISPR/Cas9 technology was used to knockout STEAP3 on colon cancer cells to analyze the effect of ATF3 on STEAP3. STEAP3 was over-expressed in colon cancer and associated with higher metastases and more invasive and worse stage of colon cancer. ChIP-seq and ChIP-qPCR analyses revealed significant enrichment of H3K27ac in the STEAP3 gene. In addition, knocking down STEAP3 significantly inhibits colon cancer cell proliferation and migration and down-regulates H3K27ac expression. ChIP-seq found that ATF3 is enriched in the STEAP3 gene and CRISPR/Cas9 technology used for the deletion of the ATF3 binding site suppresses the expression of STEAP3. Over-expression of STEAP3 promotes colon cancer cell proliferation and migration. Mechanical studies have indicated that H3K27ac and ATF3 are significantly enriched in the STEAP3 gene and regulate the over-expression of STEAP3.


Subject(s)
Cell Movement , Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Histones , Humans , Cell Proliferation/genetics , Cell Movement/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Histones/metabolism , Histones/genetics , Acetylation , Female , Cell Line, Tumor , Male , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism
2.
Adv Sci (Weinh) ; 10(33): e2205229, 2023 11.
Article in English | MEDLINE | ID: mdl-37870214

ABSTRACT

Liver metastasis is a common cause of death in progressive colorectal cancer patients, but the molecular mechanisms remain unclear. Here, it is reported that a conserved and oxidative pentose phosphate pathway-associated circular RNA, circNOLC1, plays a crucial role in colorectal cancer liver metastasis. It is found that circNOLC1 silencing reduces the oxidative pentose phosphate pathway-related intermediate metabolites and elevates NADP+ /NADPH ratio and intracellular ROS levels, thereby attenuating colorectal cancer cell proliferation, migration, and liver metastasis. circNOLC1 interacting with AZGP1 to activate mTOR/SREBP1 signaling, or sponging miR-212-5p to upregulate c-Met expression, both of which can further induce G6PD to activate oxidative pentose phosphate pathway in colorectal cancer liver metastasis. Moreover, circNOLC1 is regulated by the transcription factor YY1 and specifically stabilized HuR induces its parental gene mRNA expression. The associations between circNOLC1 and these signaling molecules are validated in primary CRC and corresponding liver metastasis tissues. These findings reveal that circNOLC1 interacting with AZGP1 and circNOLC1/miR-212-5p/c-Met axis plays a key role in oxidative pentose phosphate pathway-mediated colorectal cancer liver metastasis, which may provide a novel target for precision medicine of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Pentose Phosphate Pathway , Liver Neoplasms/metabolism , Oxidative Stress , Adipokines/metabolism
3.
J Cancer Res Clin Oncol ; 149(17): 15697-15712, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37670166

ABSTRACT

BACKGROUND: As a phosphorylated protein, NOLC1 is mainly located in the nucleus and is highly expressed in a variety of tumors, participating in the regulation of cell proliferation and aging. This study further investigated the role of NOLC1 in colorectal cancer tumors, aiming to provide sufficient scientific evidence for the clinical treatment of colorectal cancer. METHODS: We used TCGA, GEO, TNMplot, GEPIA, and other databases to explore the expression level of NOLC1 in colorectal cancer patients, as well as the correlation between the clinical characteristics of colorectal cancer patients and their expression, and conducted the prognostic analysis. Immunohistofluorescence (IHF) staining verified the analytical results. Subsequently, KEGG and GO enrichment analysis was used to identify the potential molecular mechanism of NOLC1 promoting the occurrence and development of colorectal cancer. The influence of NOLC1 expression on the immune microenvironment of colorectal cancer patients was further investigated using the TIMER database. GDSC database analysis was used to screen out possible anti-colorectal cancer drugs against NOLC1. Finally, we demonstrated the effect of NOLC1 on the activity and migration of colorectal cancer cells by Edu Cell proliferation assay and Wound Healing assay in vitro. RESULTS: Our results suggest that NOLC1 is overexpressed in colorectal cancer, and that overexpression of NOLC1 is associated with relevant clinical features. NOLC1, as an independent risk factor affecting the prognosis of colorectal cancer patients, can lead to a poor prognosis of colorectal cancer. In addition, NOLC1 may be associated with MCM10, HELLS, NOC3L, and other genes through participating in Wnt signaling pathways and jointly regulate the occurrence and development of colorectal cancer under the influence of the tumor microenvironment and many other influencing factors. Related to NOLC1: Selumetinib, Imatinib, and targeted drugs such as Lapatinib have potential value in the clinical application of colorectal cancer. NOLC1 enhances the proliferation and migration of colorectal cancer cells. CONCLUSIONS: High expression of NOLC1 as an independent prognostic factor for survival in patients with colorectal cancer. NOLC1 enhances the proliferation and migration of colorectal cancer cells. Further studies and clinical trials are needed to confirm the role of NOLC1 in the development and progression of colorectal cancer.


Subject(s)
Aging , Colorectal Neoplasms , Humans , Prognosis , Cell Proliferation , Colorectal Neoplasms/genetics , Databases, Factual , Tumor Microenvironment , Nuclear Proteins , Phosphoproteins
4.
Diabetes Res Clin Pract ; 185: 109788, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35182712

ABSTRACT

AIMS: Autophagy and exosome secretion in photoreceptor and RPE cells play an important role during diabetic retinopathy (DR). Thioredoxin (Trx) upregulation delays diabetes-induced photoreceptor cell degeneration, which the effect of autophagy and exosome secretion on it is unclear. Therefore, we investigated the effect of them on Trx upregulation to delay diabetes-induced photoreceptor cell degeneration and to identify the potential therapy for DR in the future. METHODS: Trx-transgenic mice and 661w cell were as models. Retinal function and morphology were evaluated by electroretinography and H&E staining. TUNEL staining was used to evaluate apoptosis. The protein expression was detected by Western blotting. TEM and mRFP-GFP-LC3 method were used to analyze autophagy. RESULTS: In vitro and in vivo, Trx upregulation can delay diabetes-induced photoreceptor cell degeneration. Moreover, the expression of LC3 and p62 was decreasing and the expression of Alix and CD63 was increasing after Trx overexpression. However, it was inhibited after AMPK inhibitor treatment. Additionally, secreted exosomes from photoreceptor were phagocytosed by RPE cells to regulate its physiological function. CONCLUSIONS: Trx upregulation can delay diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Secreted exosomes from photoreceptor cells could be phagocytosed and degraded by RPE cells in DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Exosomes , Retinal Degeneration , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Animals , Autophagy , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Exosomes/metabolism , Humans , Mice , Photoreceptor Cells/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Thioredoxins/pharmacology , Up-Regulation
5.
Diabetes Res Clin Pract ; 179: 109025, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34454003

ABSTRACT

AIMS: Hair cell reduction was related to diabetes-induced hearing loss. Oxidative stress, endoplasmic reticulum stress, and autophagy participate in this process. Thioredoxin (Trx) is a protein with many biological functions which can regulate them. In this study, aiming to clarify protective effect of Trx on diabetic hearing loss and to identify an early potential therapeutic target for diabetic hearing impairment in the future. METHODS: Trx transgenic (Tg) mice were used to establish a diabetic model by intraperitoneally injecting streptozotocin (STZ) and with/without SF or PX12 treatment. Succinate dehydrogenase (SDH) staining was used to evaluate the loss of hair cells. The relative expression of related proteins and genes was detected using western blotting and qRT-PCR. RESULTS: In vivo, loss of outer hair cells was observed. However, it can be delayed Trx overexpression. Moreover, the expression of PGC-1α, bcl-2 and LC3 was increased in Tg(+)-DM mice compared with Tg(-)-DM mice. The expression of ASK1, Txnip, GRP78, CHOP and p62 was decreased in Tg(+)-DM mice compared with Tg(-)-DM mice. CONCLUSIONS: Upregulation of Trx protects diabetes-induced cochlear hair cells reduction. The underlying mechanisms were related to the regulation of ER stress through ASK1 and the mitochondrial pathway or autophagy via Txnip.


Subject(s)
Diabetes Mellitus, Experimental , Hearing Loss , Animals , Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hearing Loss/genetics , Hearing Loss/prevention & control , Mice , Thioredoxins/genetics , Thioredoxins/metabolism , Up-Regulation
6.
Cell Tissue Res ; 382(3): 477-486, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32783101

ABSTRACT

Diabetic retinopathy (DR) is a serious neurodegenerative disease that is induced by hyperglycaemia. Oxidative stress, inflammation and endoplasmic reticulum (ER) stress are involved in the development of DR. Sulforaphane (SF) is widely found in cruciferous plants and has a protective effect against retinal neurodegeneration in diabetes, but the mechanism is unclear. In this study, we investigated the mechanism by which SF protects against photoreceptor degeneration in diabetes. In vivo, a mouse model of diabetes was established by streptozotocin (STZ) injection, and the mice were treated with/without SF. Electroretinography (ERG) and H&E staining were used to evaluate retinal function and morphology. In vitro, 661w cells were treated with AGEs with/without SF. Cell viability and apoptosis were analysed by CCK-8 assay and flow cytometry. The expression of proteins and genes was assessed by western blot and qRT-PCR. The amplitude of the a-wave was decreased and the morphology was changed in the diabetic mice, and these changes were delayed by SF treatment. The percentage of apoptotic cells was increased and the cell viability was decreased after the treatment of 661w cells with AGEs. Moreover, the expression of GRP78, Txnip and TNFα was increased, however, this increased expression was reversed by SF treatment via AMPK pathway activation. Taken together, these data show that SF can delay photoreceptor degeneration in diabetes, and the underlying mechanism is related to the inhibition of ER stress, inflammation and Txnip expression through the activation of the AMPK pathway.


Subject(s)
Diabetic Retinopathy/drug therapy , Glycation End Products, Advanced/metabolism , Isothiocyanates/therapeutic use , Neurodegenerative Diseases/complications , Retinal Degeneration/drug therapy , Sulfoxides/therapeutic use , Animals , Diabetes Mellitus, Experimental , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Isothiocyanates/pharmacology , Male , Mice , Neurodegenerative Diseases/pathology , Streptozocin/adverse effects , Sulfoxides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...