Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Zool Res ; 45(5): 972-982, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39085753

ABSTRACT

Type IV interferon (IFN-υ) is a recently discovered cytokine crucial for host defense against viral infections. However, the role and mechanisms of IFN-υ in bacterial infections remain unexplored. This study investigated the antibacterial and antiviral functions and mechanisms of grass carp ( Ctenopharyngodon idella) IFN-υ (CiIFN-υ) both in vivo and in vitro. The CiIFN-υ gene was first identified and characterized in grass carp. Subsequently, the immune expression of CiIFN-υ significantly increased following bacterial challenge, indicating its response to bacterial infections. The eukaryotic recombinant expression plasmid of CiIFN-υ was then constructed and transfected into fathead minnow (FHM) cells. Supernatants were collected and incubated with four bacterial strains, followed by plate spreading and colony counting. Results indicated that CiIFN-υ exhibited more potent antibacterial activity against gram-negative bacteria compared to gram-positive bacteria and aggregated gram-negative bacteria but not gram-positive bacteria. In vivo experiments further confirmed the antibacterial function, showing high survival rates, low tissue edema and damage, reduced tissue bacterial load, and elevated proinflammatory response at the early stages of bacterial infection. In addition, the antiviral function of CiIFN-υ was confirmed through in vitro and in vivo experiments, including crystal violet staining, survival rates, tissue viral burden, and RT-qPCR. This study highlights the antibacterial function and preliminary mechanism of IFN-υ, demonstrating that IFN-υ possesses dual functions against bacterial and viral infections.


Subject(s)
Carps , Fish Diseases , Animals , Carps/immunology , Fish Diseases/immunology , Fish Diseases/virology , Antiviral Agents/pharmacology , Gene Expression Regulation/drug effects , Interferons/metabolism , Interferons/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Infections/veterinary , Bacterial Infections/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Amino Acid Sequence , Phylogeny
2.
Fish Shellfish Immunol Rep ; 5: 100119, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37841419

ABSTRACT

Toll-like receptors (TLRs) play a crucial role in the recognition of microbial-associated molecular patterns in the innate immune system. Fish TLRs have undergone significant gene expansion to adapt to complex aquatic environments. Among them, TLR20 from the TLR11 family actively responds to viral and bacterial invasions. Previous studies have reported two TLR20s in grass carp (Ctenopharyngodon idella), and in this study, we revised this conclusion. Based on the latest grass carp genome, we identified a new TLR20 member. These three TLR20s are arranged in tandem on chromosome 9, indicating that they are generated by gene duplication events. They were renamed CiTLR20.1 to CiTLR20.3 based on their chromosomal positions. The CiTLR20s in C. idella exhibit higher similarities with those in Danio rerio, Cyprinus carpio, and Megalobrama amblycephala, and lower similarities with those in other distantly related fish species. Selective pressure analysis revealed low conservation and negative evolution of TLR20s during evolution. The 3D structures of the three TLR20s showed significant differences, reflecting functional variations and different downstream adaptor molecule recruitment. Transcriptome data revealed tissue distribution differences of TLR20s, with TLR20.1 showing relatively low expression levels in all the tissues, while TLR20.2 and TLR20.3 showed higher expression in the head kidney, spleen, and gill. Additionally, TLR20.2 and TLR20.3 actively responded to GCRV-II infection, with higher upregulation of TLR20.2 in response to Aeromonas hydrophila challenge. In conclusion, this study corrected the number of grass carp TLR20 members and analyzed TLR20 from an evolutionary and structural perspective, exploring its role in antiviral and antibacterial defense. This study provides reference for future research on fish TLR20.

3.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884822

ABSTRACT

The olfactory organ is an important chemoreceptor in vertebrates. However, the sexual disparities in gene expression patterns in the olfactory organ in fish remain unstudied. Here, we conducted a transcriptome analysis of the olfactory epithelium (OE) of male and female blunt snout bream (Megalobrama amblycephala) to identify the differences. The histological analysis showed that there were 22 leaf-like olfactory lamellaes on one side of the OE of the adult blunt snout bream. The sensory area of OE is enriched with ciliated receptor cells and microvilli receptor cells. The transcriptome analysis showed that only 10 out of 336 olfactory receptor genes (224 ORs, 5 V1Rs, 55 V2Rs, and 52 TAARs) exhibited significant expression differences between males and females, and most of the differentially expressed genes were related to the immune system. We also validated these results using qPCR: 10 OR genes and 6 immunity-related genes significantly differed between males and females. The FISH analysis results indicated that the ORs were mainly expressed at the edge of the olfactory lamellae. Collectively, our study reveals that gender is not an important factor influencing the expression of olfactory receptors, but the expression of immune genes varies greatly between the genders in blunt snout bream.


Subject(s)
Cyprinidae/genetics , Olfactory Mucosa/metabolism , Transcriptome , Animals , Cyprinidae/metabolism , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Regulatory Networks/genetics , Immune System/metabolism , Male , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Sequence Analysis, RNA
4.
Mol Biol Evol ; 38(10): 4238-4251, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34003267

ABSTRACT

The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily ß and ε ORs. Across teleosts, we found a strong association between duplications of ß and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded ß and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of ß and ε OR in freshwater adaptation.


Subject(s)
Cyprinidae , Receptors, Odorant , Animals , Chromosomes , Cyprinidae/genetics , Fish Proteins/genetics , Fresh Water , Genome , Mammals/genetics , Receptors, Odorant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL