Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Publication year range
1.
Biomed Pharmacother ; 153: 113268, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777221

ABSTRACT

Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), increases the serotonin levels in the brain to treat depression. Antidepressants have been demonstrated to modulate circadian rhythm, but the underlying mechanisms by which antidepressants regulate circadian rhythm require more research. This study aimed to investigate the role of FLX on circadian rhythm by analyzing the movement behavior and internal circadian oscillations in zebrafish. The results showed that the expression of clock genes clock1a and bmal1b was significantly down-regulated, and the amplitude reduction and phase shift were observed after FLX treatment. Furthermore, FLX exposure inhibited the expression of aanat2, which led to a decrease in nocturnal melatonin secretion. aanat2-/- larvae showed disrupted circadian rhythm. These findings may help reveal the effect of FLX exposure on the circadian rhythm and locomotor activity. It may provide theoretical data for the clinical application of FLX.


Subject(s)
Fluoxetine , Melatonin , Animals , Antidepressive Agents/pharmacology , Circadian Rhythm/genetics , Fluoxetine/pharmacology , Melatonin/metabolism , Melatonin/pharmacology , Zebrafish/metabolism
2.
Biomed Pharmacother ; 153: 113321, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35759868

ABSTRACT

Muscarinic acetylcholine receptors (mAChRs) are widely expressed in various effector cells and have been proved to play vital roles in smooth muscle contraction and digestive secretion. However, there are relatively few literatures revealing the roles of mAChRs in inflammatory processes, and its underlying regulatory mechanisms have not been elucidated. Taking the advantages of live imaging of zebrafish, we found that inhibition of mAChRs resulted in increased neutrophils recruitment and proinflammatory cytokines expression, whereas activation of mAChRs led to opposite outcome. Subsequently, we found that mAChRs regulated the expression of arginases (args), and pharmacological intervention of args level could reverse the effects of mAChRs on neutrophils migration and cytokines expression, suggesting that args are important downstream proteins of mAChRs that mediate the regulation of inflammatory response. In this study, we identified args as novel downstream proteins of mAChRs in inflammatory responses, providing additional evidence for system immune regulation of cholinergic receptors.


Subject(s)
Arginase , Zebrafish , Animals , Cytokines , Receptors, Muscarinic/genetics , Receptors, Muscarinic/metabolism , Zebrafish/metabolism
3.
Fish Shellfish Immunol ; 125: 212-219, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35569778

ABSTRACT

Normal dissolved oxygen in water is essential for maintaining the physiological functions of fish, but environmental pollution, such as eutrophication can lead to a decrease in oxygen content in water. How this reduction of dissolved oxygen in water affects the immune functions of fish and the potential regulatory mechanisms have not been thoroughly elucidated. In this study, we made full use of the aquatic model animal zebrafish to explore this question. In a model of LPS-induced inflammation, we found that hypoxia induced by infusing nitrogen into water increased the expression of pro-inflammatory cytokines, such as il-1ß, il-6, and il-8. In vivo imaging also showed that hypoxia significantly increased neutrophil migration to the site of caudal fin injury in the transgenic line. Subsequently, we found that the phosphorylation level of ERK protein was significantly activated upon hypoxia and proved the roles of ERK signaling in the expression of pro-inflammatory cytokines and neutrophil migration in zebrafish. This study indicated that reduced water oxygen significantly increases the inflammatory response of the zebrafish.


Subject(s)
Cytokines , Zebrafish , Animals , Cytokines/genetics , Cytokines/metabolism , Hypoxia/genetics , Inflammation/chemically induced , Inflammation/genetics , Neutrophils , Oxygen/metabolism , Water , Zebrafish/genetics , Zebrafish/metabolism
4.
Neuroreport ; 30(15): 993-997, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31464840

ABSTRACT

Although accumulating evidence suggests that there are significant anatomical and histological differences between the sulci and gyri of the cerebral cortex, whether there is a difference in the distribution of interneurons between the two cortical regions remains largely unknown. In this study, we systematically compared the distributions of parvalbumin-positive interneurons among three neighboring gyrus and sulcus pairs-coronal gyrus and cruciate sulcus, anterior ectosylvian gyrus and rostral suprasylvian sulcus, and posterior ectosylvian gyrus and pseudosylvian sulcus-in the adult ferret cerebral cortex. We proposed a method to partition sulci and gyri into several specific subregions through the deepest points of the sulci and the highest points of gyri in the inner and outer cortical contours of coronal sections. We found that the density of parvalbumin-positive interneurons in the gyri was significantly higher than that in the sulci. Further study revealed that the density of PV interneurons in superficial cortical layers (layers 2/3 and layer 4) was comparable among the three pairs of sulci and gyri. However, the density of parvalbumin-positive interneurons in cortical layers 5/6 was significantly higher in gyri than in sulci. These results indicate that parvalbumin-positive interneurons are differently distributed in infragranular layers of cortical sulci and gyri.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Ferrets/physiology , Interneurons/physiology , Parvalbumins/physiology , Animals , Brain Mapping , Cell Count , Cerebral Cortex/cytology , Female , Immunohistochemistry
5.
Zhongguo Zhong Yao Za Zhi ; 42(15): 3026-3030, 2017 Aug.
Article in Chinese | MEDLINE | ID: mdl-29139274

ABSTRACT

To investigate the effect of dihydroartemisinin on apoptosis of human pancreatic cancer cell line JF-305 and the role of reactive oxygen species(ROS) in the apoptosis of JF-305 cells induced by dihydroartemisinin. MTT assays were used to detect effect of different concentrations of dihydroartemisinin on cells proliferation of JF-305 lines. Cell cycle was detected by flow cytometry, and the apoptotic morphology was observed by Hoechst 333258 fluorescence staining. Annexin V fluorescence staining was used to detect the apoptosis changes of JF-305 cells, while DCFH-DA was used to detect the changes of ROS during apoptosis process. Western blot was used to detect the protein expression changes of Bax, Bcl-2, Cleaved caspase-3, Cleaved caspase-9 and Cyto C. As compared with the control group, the JF-305 cells proliferation was inhibited significantly(P<0.05) after treatment with different concentrations of dihydroartemisimin for 48 h; cell cycle was blocked in the G2/M phase; apoptotic morphology of nuclear condensation, aggregation, and fragmentation was found, and the apoptosis ratio was increased(P<0.05). DCFH-DA detection showed that the cell ROS was increased significantly after dihydroartemisinin treatment(P<0.05). Western blot results showed that the expression of Bcl-2 protein was down-regulated; the expression of Bax protein was up-regulated; the ration of Bax/Bcl-2 was increased and the protein expression levels of Cleaved caspase-3, Cleaved caspase-9 and Cyto C were increased after dihydroartemisinin treatment. Therefore, dihydroartemisinin could induce apoptosis of JF-305 cells, and the possible mechanism may be related to the formation and increasing of ROS.


Subject(s)
Apoptosis/drug effects , Artemisinins/pharmacology , Cell Proliferation/drug effects , Pancreatic Neoplasms , Reactive Oxygen Species/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cytochromes c/metabolism , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
6.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(4): 471-5, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-27323622

ABSTRACT

OBJECTIVE: To explore the protection of high intensity microwave radiation on hypothalamo-pituitary-adrenal axis (HPAA) activity and hippocampal CA1 structure in rats and the protectiveeffect of Qindan Granule (QG) on radiation injured rats. METHODS: Totally 48 Wistar rats were randomlydivided into 8 groups, i.e., the normal control group, post-radiation day 1, 7, and 10 groups, 7 and 10days prevention groups, day 7 and 10 treatment groups, 6 in each group. Rats in prevention groups wererespectively administered with QG liquid (1 mL/100 g, 4. 75 g crude drugs) for 7 days and 10 days bygastrogavage and then microwave radiation. Then preventive effect for radiation injury was statisticallycalculated with the normal control group and the post-radiation day 1 group. Rats in treatment groupswere firstly irradiated, and then administered with QG liquid (1 mL/100 g, 4.75 g crude drugs). Finally preventive effect for radiation injury was statistically calculated with the normal control group, post-radiation day 7 and 10 groups. Contents of corticotrophin releasing hormone (CRH), beta endorphin (beta-EP), adrenocorticotropic hormone (ACTH), and heat shock protein 70 (HSP70) were detected. Morphological changes and structure of hippocampal CA1 region were observed under light microscope. RESULTS: Compared with the normal control group, contents of CRH and beta-EP significantly decreased in each radiation group. Serum contents of ACTH and beta-EP significantly increased in post-radiation day 1 and 7 groups (P < 0.05). Compared with radiation groups, beta-EP content in serum and pituitary significantly increased, and serum ACTH content significantly decreased in prevention groups (P < 0.05). Pituitary contents of CRH and beta-EP significantly increased in prevention groups. Serum contents of ACTH, beta-EP, and HSP70 were significantly lower in day 7 treatment group than post-radiation day 7 group (P < 0.05). Morphological results showed that pyramidal neurons in the hippocampal CA1 region arranged in disorder, with swollen cells, shrunken and condensed nucleus, dark dyeing cytoplasm, unclear structure. Vessels in partial regions were dilated with static blood; tissues were swollen and sparse. In prevention and treatment groups pathological damage of hippocampal CA1 region was obviously attenuated; neurons were arranged more regularly; swollen, pycnotic, or deleted neuron number were decreased; vascular dilatation and congestion was lessened. CONCLUSION: QG could affect HPAA function and activity of high intensity microwave radiated rats, showing certain preventive and therapeutic effects of microwave radiated rats by adjusting synthesis and release of partial bioactive peptides and hormones in HPAA, improving pathological injury in hippocampal CA1 region.


Subject(s)
CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , Drugs, Chinese Herbal/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Microwaves/adverse effects , Pituitary-Adrenal System/drug effects , Adrenocorticotropic Hormone/blood , Animals , CA1 Region, Hippocampal/radiation effects , Corticotropin-Releasing Hormone/metabolism , HSP70 Heat-Shock Proteins/blood , Hypothalamo-Hypophyseal System/radiation effects , Pituitary-Adrenal System/radiation effects , Random Allocation , Rats , Rats, Wistar , beta-Endorphin/blood , beta-Endorphin/metabolism
7.
J Appl Genet ; 53(4): 443-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22903590

ABSTRACT

Interleukin-15 (IL-15) is a cytokine that has been proposed to modulate skeletal muscle and adipose tissue mass. In the present study, an F(2) resource population of Gushi chickens crossed with Anka broilers was used to investigate the genetic effects of the chicken IL-15 gene. Two single nucleotide polymorphisms (SNPs) (g.31224G>A and g.31266T>G) were identified in exon 5 of the IL-15 gene by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing. Associations between the two SNPs and chicken fatness and muscle fiber traits were determined using linkage disequilibrium, haplotype construction, and association analysis. Both of the SNPs were associated with abdominal fat weight, leg muscle fiber diameter, and leg muscle fiber density (p < 0.05). Haplotypes of the two linked SNPs were associated with abdominal fat weight, fat thickness under the skin, and leg muscle fiber diameter (p < 0.05). The results suggested that the IL-15 gene might be associated with the causative mutation or the quantitative trait locus (QTL) controlling the fatness traits and muscle fiber traits in chickens.


Subject(s)
Abdominal Fat/physiology , Chickens/genetics , Genetic Association Studies/veterinary , Interleukin-15/genetics , Muscle Fibers, Skeletal/physiology , Polymorphism, Genetic , Animals , Body Weight/genetics , Chickens/physiology , Crosses, Genetic , Female , Genetic Association Studies/methods , Haplotypes , Linkage Disequilibrium , Male , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...