Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503925

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.

2.
Oncotarget ; 7(43): 70290-70302, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27602964

ABSTRACT

The various clock genes in normal cells, through their interaction, establish a number of positive and negative feedback loops that compose a network structure. These genes play an important role in regulating normal physiological activities. The expression of clock gene PER1 is decreased in many types of cancer. PER1 is highly correlated with the initiation and progression of cancer by regulating numerous downstream genes. However, it is still unclear whether the lower expression of PER1 in cancer can influence the expression of other clock genes in the clock gene network. In this study, we used short hairpin RNA interference to knock down PER1 effectively in SCC15 human oral squamous cell carcinoma cells. These cancer cells later were subcutaneously injected into the back of nude mice. We discovered that after PER1 knockdown, apoptosis was decreased and cell proliferation and in vivo tumor formation were enhanced. Quantitative real-time PCR result indicated that in vitro and in vivo cancer cells after PER1 knockdown, PER2, DEC1, DEC2, CRY1, CRY2 and NPAS2 were significantly down-regulated at the mRNA level, while PER3, TIM, RORα and REV-ERBα were significantly up-regulated. It prompts that the role of PER1 in carcinogenesis is exerted not only by regulating downstream genes, but also through the synergistic dysregulation of many other clock genes in the clock gene network.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Regulatory Networks , Mouth Neoplasms/genetics , Period Circadian Proteins/physiology , Animals , Apoptosis , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mouth Neoplasms/pathology , Period Circadian Proteins/antagonists & inhibitors , Period Circadian Proteins/genetics , RNA, Messenger/analysis
3.
Int J Nanomedicine ; 6: 1739-45, 2011.
Article in English | MEDLINE | ID: mdl-21980236

ABSTRACT

OBJECTIVES: The purpose of this study was to investigate in-vivo visible imaging of oral squamous cell carcinoma (OSCC) by targeting epidermal growth factor receptor (EGFR) with near-infrared quantum dots. MATERIALS AND METHODS: Quantum dots with an emission wavelength of 800 nm (QD800) were conjugated to monoclonal antibodies against EGFR, resulting in the probe designated as QD800-EGFR Ab. OSCC cell line (BcaCD885) expressing high levels of EGFR was transplanted subcutaneously into nude mice cheeks to develop an OSCC animal model. QD800-EGFR Ab containing 100 pmol equivalent of QD800 was intravenously injected into the animal model, and in-situ and in-vivo imaging of cheek squamous cell carcinoma was analyzed at 10 different time points. RESULTS AND CONCLUSION: In-vivo imaging and immunohistochemical examination of the tumors showed that intravenously injected QD800-EGFR Ab probe could bind EGFR expressed on BcaCD885 cells. Fluorescence signals of BcaCD885 cells labeled with QD800-EGFR Ab probe could be clearly detected, and these fluorescence signals lasted for 24 hours. The most complete tumor images with maximal signal-to-noise ratio were observed from 15 minutes to 6 hours after injection of the probe. To the best of the authors' knowledge, this is the first study that has obtained clear in-situ and in-vivo imaging of head and neck cancer by using QD800-EGFR Ab probe. The authors conclude that the combination of near-infrared quantum dots that are highly penetrating for tissues with EGFR monoclonal antibody has promising prospects in in-vivo imaging of OSCC and development of personalized surgical therapies.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Carcinoma, Squamous Cell/pathology , ErbB Receptors/metabolism , Immunoconjugates , Molecular Probes , Mouth Neoplasms/pathology , Quantum Dots , Animals , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/enzymology , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Imaging/methods , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Mouth Neoplasms/diagnosis , Mouth Neoplasms/enzymology , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...