Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461906

ABSTRACT

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Subject(s)
Hepatic Stellate Cells , Liver Diseases , Rats , Animals , Sevelamer/adverse effects , Antioxidants/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism , Liver Diseases/metabolism , Transforming Growth Factor beta/metabolism , Phosphorus/metabolism , Phosphorus/pharmacology , Phosphorus/therapeutic use , Transforming Growth Factor beta1/metabolism
2.
J Cell Mol Med ; 27(19): 2906-2921, 2023 10.
Article in English | MEDLINE | ID: mdl-37471521

ABSTRACT

Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage-based cancer therapeutics is to reduce anti-inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low-Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP-1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB-α and STAT3 as well as their phosphorylation. Results showed that low-Pi stress irreversibly repolarizes tumour-associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG-2 and SMCC-7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial-mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low-Pi stress is more immunostimulatory. The anticancer immune response, activated by low-Pi stress, suggests a new macrophage-based immunotherapeutic modality.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Tumor-Associated Macrophages/metabolism , Macrophages/metabolism , Monocytes/metabolism , Cell Line, Tumor , Tumor Microenvironment
3.
Biochem Pharmacol ; 213: 115593, 2023 07.
Article in English | MEDLINE | ID: mdl-37196682

ABSTRACT

Sorafenib is a tyrosine kinase inhibitor for the treatment of advanced-stage HCC; however, clinical trials of sorafenib failed to demonstrate long-term survival benefits due to drug resistance. Low Pi stress has been shown to inhibit tumor growth and the expression of multidrug resistance-associated proteins. In this study, we investigated the sensitivity of HCC to sorafenib under conditions of low Pi stress. As a result, we found that low Pi stress facilitated sorafenib-mediated suppression of migration and invasion of HepG-2 and Hepa1-6 cells by decreasing the phosphorylation or expression of AKT, Erk and MMP-9. Angiogenesis was inhibited due to decreased expression of PDGFR under low Pi stress. Low Pi stress also decreased the viability of sorafenib-resistant cells by directly regulating the expression of AKT, HIF-1a and P62. In vivo drug sensitivity analysis in the four animal models showed a similar tendency that low Pi stress enhances sorafenib sensitivity in both the normal and drug-resistant models. Altogether, low Pi stress enhances the sensitivity of hepatocellular carcinoma to sorafenib and expands the indications for sevelamer.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver Neoplasms/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Phenylurea Compounds/pharmacology , Cell Line, Tumor , Mice, Inbred Strains , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Front Bioeng Biotechnol ; 10: 1058042, 2022.
Article in English | MEDLINE | ID: mdl-36578505

ABSTRACT

As the most efficient method to treat hepatocellular carcinoma in the immediate or advanced stage, transarterial chemoembolization (TACE) is coming into the era of microsphere (MP). Drug-eluting beads have shown their huge potential as an embolic agent and drug carrier for chemoembolization, but their sizes are strictly limited to be above 40 µm, which was considered to occlude vessels in a safe mode. microsphere smaller than 40 µm is easy to be washed out and transported to the normal liver lobe or other organs, causing severe adverse events and failed embolization. To determine whether sevelamer ultrafine particle (0.2-0.5 µm) is qualified as a safe and efficient embolic agent, we investigated the safety and therapeutic efficiency of transarterial sevelamer embolization (TASE) in the VX2 rabbit liver cancer model, aiming to challenge the "40 µm" rule on the selection criteria of the MP. In a four-arm study, blank bead (Callisphere, 100-300 µm), luminescent polystyrene microsphere (10, 100 µm), and sevelamer particle were transarterially administered to evaluate the threshold size of the MP size for intrahepatic or extrahepatic permeability. Another four-arm study was designed to clarify the safety and efficiency of preclinical transarterial sevelamer embolizationTASE tests over other techniques. Sham (saline), TASE, C-TACE, and D-TACE (n = 6) were compared in terms of serum chemistry, histopathology, and tumor necrosis ratio. In the first trials, the "40 µm" rule was detectable on the VX2 cancer model, but the regulation has no application to the new embolic agent as sevelamer ultrafine particles have not been found to leak out from the VX2 lesions, only found in the embolized vessels. Pathology proves that less viable tumor residue was found 2 weeks after the procedure, evidencing a better therapeutic outcome. No adverse events were found except for a short stress response. These results indicate that sevelamer is a safe and efficient embolic as an alternative to the current MP-based embolization therapy techniques.

5.
Drug Deliv ; 29(1): 1447-1456, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35532152

ABSTRACT

Arsenic trioxide (As2O3, ATO) has limited therapeutic benefit to treat solid tumors, whether used alone or in combination. Nanoscale drug delivery vehicles have great potential to overcome the limitation of the utility of ATO by rapid renal clearance and dose-limiting toxicity. Polymeric materials ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) were developed for vascular embolic or chemoembolic applications. Recently, we have introduced sevelamer, an oral phosphate binder, as a new polymeric embolic for vascular interventional therapy. In this paper, sevelamer arsenite nanoparticle with a polygonal shape and a size of 50-300 nm, synthesized by anionic exchange from sevelamer chloride, was developed as a Pi-responsive bifunctional drug carrier and embolic agent for chemoembolization therapy. At the same arsenic dosage, sevelamer arsenite-induced severer tumor necrosis than ATO on the VX2 cancer model. In vitro tests evidenced that Pi deprivation by sevelamer could enhance ATO's anticancer effect. The results showed that ATO in Pi starvation reduced cell viability, induced more apoptosis, and diminished the mitochondrial membrane potential (Δψm) of cells since Pi starvation helps ATO to further down-regulate Bcl-2 expression, up-regulate Bax expression, enhance the activation of caspase-3 and increase the release of cytochrome c, and the production of excessive reactive oxygen species (ROS). Sevelamer arsenite not only plays a Pi-activated nano-drug delivery system but also integrated anticancer drug with embolic for interventional therapy. Therefore, our results presented a new administration route of ATO as well as an alternative chemoembolization therapy.


Subject(s)
Antineoplastic Agents , Arsenicals , Arsenites , Nanoparticles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Arsenicals/pharmacology , Arsenites/pharmacology , Cell Line, Tumor , Drug Carriers/pharmacology , Drug Synergism , Oxides , Sevelamer/pharmacology
6.
Nanotechnology ; 33(35)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35616242

ABSTRACT

Decades have witnessed rapid progress of polymeric materials for vascular embolic or chemoembolic applications. Commercially available polymeric embolics range from gelatin foam to synthetic polymers such as poly(vinyl alcohol). Current systems under investigation include tunable, bioresorbable microspheres composed of chitosan or poly(ethylene glycol) derivatives,in situgelling liquid embolics with improved safety profiles, and radiopaque embolics that are trackablein vivo. In this paper, we proposed a concept of 'responsive embolization'. Sevelamer, clinically proved as an inorganic phosphate binder, was ground into nanoparticles. Sevelamer nanoparticle is highly mobile and capable of swelling and aggregating in the presence of endogenous inorganic phosphate, thereby effectively occluding blood flow in the vessel as it was administered as an embolic agent for interventional therapy. Moreover, citrated sevelamer nanoparticles delayed the aggregation, preferable to penetrate deeply into the capillary system. On the rabbit VX2 liver cancer model, both sevelamer particles aggregates occlude the tumor feeding artery, but backflow was found for the pristine one, thereby citrate passivation of sevelamer nanoparticles endows it have potential from 'bench to bedside' as a new type of vascular embolic.


Subject(s)
Embolization, Therapeutic , Nanoparticles , Animals , Microspheres , Phosphates , Polymers , Rabbits , Sevelamer
7.
Drug Deliv ; 29(1): 1743-1753, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35635315

ABSTRACT

It is a decade-long controversy that transarterial chemoembolization (TACE) has definite priority over transarterial embolization (TAE) in treating patients with hepatocellular carcinoma (HCC), since HCC cells are regularly resistant to chemotherapy by enhanced expression of proteins that confer drug resistance, and ABC transporters pump the intracellular drug out of the cell. We addressed this issue by modulating the chemo-environment. In an animal model, sevelamer, a polymeric phosphate binder, was introduced as an embolic agent to induce intratumoral inorganic phosphate (Pi) starvation, and trans-arterially co-delivered with doxorubicin (DOX). The new type of TACE was named as DOX-TASE. This Pi-starved environment enhanced DOX tumoral accumulation and retention, and DOX-TASE thereby induced more severe tumor necrosis than that induced by conventional TACE (C-TACE) and drug-eluting bead TACE (D-TACE) at the same dose. In vitro tests showed that Pi starvation increased the cellular accumulation of DOX in an irreversible manner and enhanced cytotoxicity and cell apoptosis by suppressing the expression of ABC transporters (P-glycoprotein (P-gp), BCRP, and MRP1) and the production of intracellular ATP. Our results are indicative of an alternative interventional therapy combining chemotherapy with embolization more effectively.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Carcinoma, Hepatocellular/drug therapy , Chemoembolization, Therapeutic/methods , Doxorubicin , Humans , Liver Neoplasms/drug therapy , Neoplasm Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...