Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617354

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous system of some neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy (IBM). TDP-43 aggregates from ALS and FTD brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in IBM patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with IBM, IMNM and ALS we found that TDP-43 seeding capacity was specific to IBM. Surprisingly, TDP-43 seeding capacity anti-correlated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.

2.
Ann Clin Transl Neurol ; 10(6): 1012-1024, 2023 06.
Article in English | MEDLINE | ID: mdl-37119480

ABSTRACT

OBJECTIVE: Accumulation of misfolded superoxide dismutase-1 (SOD1) is a pathological hallmark of SOD1-related amyotrophic lateral sclerosis (ALS) and is observed in sporadic ALS where its role in pathogenesis is controversial. Understanding in vivo protein kinetics may clarify how SOD1 influences neurodegeneration and inform optimal dosing for therapies that lower SOD1 transcripts. METHODS: We employed stable isotope labeling paired with mass spectrometry to evaluate in vivo protein kinetics and concentration of soluble SOD1 in cerebrospinal fluid (CSF) of SOD1 mutation carriers, sporadic ALS participants and controls. A deaminated SOD1 peptide, SDGPVKV, that correlates with protein stability was also measured. RESULTS: In participants with heterozygous SOD1A5V mutations, known to cause rapidly progressive ALS, mutant SOD1 protein exhibited ~twofold faster turnover and ~ 16-fold lower concentration compared to wild-type SOD1 protein. SDGPVKV levels were increased in SOD1A5V carriers relative to controls. Thus, SOD1 mutations impact protein kinetics and stability. We applied this approach to sporadic ALS participants and found that SOD1 turnover, concentration, and SDGPVKV levels are not significantly different compared to controls. INTERPRETATION: These results highlight the ability of stable isotope labeling approaches and peptide deamidation to discern the influence of disease mutations on protein kinetics and stability and support implementation of this method to optimize clinical trial design of gene and molecular therapies for neurological disorders. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03449212.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Superoxide Dismutase/genetics , Kinetics
3.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34059824

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Sphingolipids/biosynthesis , Adolescent , Adult , Alleles , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , CRISPR-Cas Systems , Child , Female , Genes, Dominant , HEK293 Cells , Humans , Male , Middle Aged , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Young Adult
4.
Curr Opin Neurol ; 31(5): 648-654, 2018 10.
Article in English | MEDLINE | ID: mdl-30028737

ABSTRACT

PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is a rapidly fatal disease for which there is currently no effective therapy. The present review describes the current progress of existing molecular therapies in the clinical trial pipeline and highlights promising future antisense oligonucleotide (ASO) and viral therapeutic strategies for treating ALS. RECENT FINDINGS: The immense progress in the design of clinical trials and generation of ASO therapies directed towards superoxide dismutase-1 (SOD1) and chromosome 9 open reading frame 72 (C9orf72) repeat expansion related disease have been propelled by fundamental work to identify the genetic underpinnings of familial ALS and develop relevant disease models. Preclinical studies have also identified promising targets for sporadic ALS (sALS). Moreover, encouraging results in adeno-associated virus (AAV)-based therapies for spinal muscular atrophy (SMA) provide a roadmap for continued improvement in delivery and design of molecular therapies for ALS. SUMMARY: Advances in preclinical and clinical studies of ASO and viral directed approaches to neuromuscular disease, particularly ALS, indicate that these approaches have high specificity and are relatively well tolerated.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Oligonucleotides, Antisense/therapeutic use , Dependovirus , Humans , Muscular Atrophy, Spinal/therapy
5.
Cell ; 143(4): 628-38, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21074052

ABSTRACT

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


Subject(s)
Calcium Channels/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Pain/genetics , Adult , Animals , Back Pain/genetics , Calcium Channels/metabolism , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Hot Temperature , Humans , Mice , Polymorphism, Single Nucleotide , RNA Interference
6.
Cell ; 138(5): 947-60, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19737521

ABSTRACT

Synaptic vesicle (SV) exo- and endocytosis are tightly coupled to sustain neurotransmission in presynaptic terminals, and both are regulated by Ca(2+). Ca(2+) influx triggered by voltage-gated Ca(2+) channels is necessary for SV fusion. However, extracellular Ca(2+) has also been shown to be required for endocytosis. The intracellular Ca(2+) levels (<1 microM) that trigger endocytosis are typically much lower than those (>10 microM) needed to induce exocytosis, and endocytosis is inhibited when the Ca(2+) level exceeds 1 microM. Here, we identify and characterize a transmembrane protein associated with SVs that, upon SV fusion, localizes at periactive zones. Loss of Flower results in impaired intracellular resting Ca(2+) levels and impaired endocytosis. Flower multimerizes and is able to form a channel to control Ca(2+) influx. We propose that Flower functions as a Ca(2+) channel to regulate synaptic endocytosis and hence couples exo- with endocytosis.


Subject(s)
Calcium Channels/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endocytosis , Exocytosis , Synaptic Vesicles/metabolism , Animals , Calcium Channels/analysis , Drosophila Proteins/analysis , Drosophila melanogaster/cytology , Protein Isoforms/analysis , Protein Isoforms/metabolism , Synaptic Vesicles/chemistry
7.
Neuron ; 63(2): 203-15, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19640479

ABSTRACT

Synaptic vesicle endocytosis is critical for maintaining synaptic communication during intense stimulation. Here we describe Tweek, a conserved protein that is required for synaptic vesicle recycling. tweek mutants show reduced FM1-43 uptake, cannot maintain release during intense stimulation, and harbor larger than normal synaptic vesicles, implicating it in vesicle recycling at the synapse. Interestingly, the levels of a fluorescent PI(4,5)P(2) reporter are reduced at tweek mutant synapses, and the probe is aberrantly localized during stimulation. In addition, various endocytic adaptors known to bind PI(4,5)P(2) are mislocalized and the defects in FM1-43 dye uptake and adaptor localization are partially suppressed by removing one copy of the phosphoinositide phosphatase synaptojanin, suggesting a role for Tweek in maintaining proper phosphoinositide levels at synapses. Our data implicate Tweek in regulating synaptic vesicle recycling via an action mediated at least in part by the regulation of PI(4,5)P(2) levels or availability at the synapse.


Subject(s)
Drosophila Proteins/physiology , Endocytosis/physiology , Nerve Tissue Proteins/physiology , Neurons/metabolism , Phosphatidylinositol Phosphates/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Blotting, Western , DNA, Complementary , Diptera , Endocytosis/genetics , Eye Abnormalities/genetics , Immunohistochemistry , Microscopy, Electron, Transmission , Molecular Sequence Data , Mutation , Neurons/ultrastructure , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Synapses/genetics , Synapses/ultrastructure , Synaptic Transmission/genetics , Synaptic Vesicles/genetics , Synaptic Vesicles/ultrastructure
8.
Cold Spring Harb Perspect Biol ; 1(4): a003079, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20066100

ABSTRACT

Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.


Subject(s)
Cell Adhesion , Synapses/physiology , Vertebrates/physiology , Animals , Cadherins/metabolism , Humans , Leucine/chemistry , Mental Disorders/metabolism , Models, Biological , Neurodegenerative Diseases/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Synaptic Transmission
9.
J Cell Biol ; 181(1): 157-70, 2008 Apr 07.
Article in English | MEDLINE | ID: mdl-18391075

ABSTRACT

In a screen to identify genes involved in synaptic function, we isolated mutations in Drosophila melanogaster straightjacket (stj), an alpha(2)delta subunit of the voltage-gated calcium channel. stj mutant photoreceptors develop normal synaptic connections but display reduced "on-off" transients in electroretinogram recordings, indicating a failure to evoke postsynaptic responses and, thus, a defect in neurotransmission. stj is expressed in neurons but excluded from glia. Mutants exhibit endogenous seizure-like activity, indicating altered neuronal excitability. However, at the synaptic level, stj larval neuromuscular junctions exhibit approximately fourfold reduction in synaptic release compared with controls stemming from a reduced release probability at these synapses. These defects likely stem from destabilization of Cacophony (Cac), the primary presynaptic alpha(1) subunit in D. melanogaster. Interestingly, neuronal overexpression of cac partially rescues the viability and physiological defects in stj mutants, indicating a role for the alpha(2)delta Ca(2+) channel subunit in mediating the proper localization of an alpha(1) subunit at synapses.


Subject(s)
Calcium Channels/metabolism , Drosophila Proteins/metabolism , Neurons/metabolism , Synapses , Animals , Calcium Channels/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Electroretinography , Mutation , Neurotransmitter Agents/metabolism
10.
Neuron ; 57(1): 27-40, 2008 Jan 10.
Article in English | MEDLINE | ID: mdl-18184562

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of a translated CAG repeat in the N terminus of the huntingtin (htt) protein. Here we describe the generation and characterization of a full-length HD Drosophila model to reveal a previously unknown disease mechanism that occurs early in the course of pathogenesis, before expanded htt is imported into the nucleus in detectable amounts. We find that expanded full-length htt (128Qhtt(FL)) leads to behavioral, neurodegenerative, and electrophysiological phenotypes. These phenotypes are caused by a Ca2+-dependent increase in neurotransmitter release efficiency in 128Qhtt(FL) animals. Partial loss of function in synaptic transmission (syntaxin, Snap, Rop) and voltage-gated Ca2+ channel genes suppresses both the electrophysiological and the neurodegenerative phenotypes. Thus, our data indicate that increased neurotransmission is at the root of neuronal degeneration caused by expanded full-length htt during early stages of pathogenesis.


Subject(s)
Cytoplasm/metabolism , Nerve Degeneration/prevention & control , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Synaptic Transmission/physiology , Trinucleotide Repeat Expansion/genetics , Animals , Animals, Genetically Modified , Behavior, Animal , Calcium/metabolism , Disease Models, Animal , Drosophila , Eye/pathology , Eye/ultrastructure , Green Fluorescent Proteins/metabolism , Humans , Huntingtin Protein , Huntington Disease , Larva , Microscopy, Electron, Scanning/methods , Mutation/genetics , Nerve Degeneration/pathology , Nerve Tissue Proteins/genetics , Neurotransmitter Agents/metabolism , Nuclear Proteins/genetics
11.
J Cell Biol ; 179(7): 1481-96, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-18158335

ABSTRACT

Posttranslational modification through palmitoylation regulates protein localization and function. In this study, we identify a role for the Drosophila melanogaster palmitoyl transferase Huntingtin-interacting protein 14 (HIP14) in neurotransmitter release. hip14 mutants show exocytic defects at low frequency stimulation and a nearly complete loss of synaptic transmission at higher temperature. Interestingly, two exocytic components known to be palmitoylated, cysteine string protein (CSP) and SNAP25, are severely mislocalized at hip14 mutant synapses. Complementary DNA rescue and localization experiments indicate that HIP14 is required solely in the nervous system and is essential for presynaptic function. Biochemical studies indicate that HIP14 palmitoylates CSP and that CSP is not palmitoylated in hip14 mutants. Furthermore, the hip14 exocytic defects can be suppressed by targeting CSP to synaptic vesicles using a chimeric protein approach. Our data indicate that HIP14 controls neurotransmitter release by regulating the trafficking of CSP to synapses.


Subject(s)
Acyltransferases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Exocytosis/physiology , Nervous System/metabolism , Synaptic Vesicles/metabolism , Acyltransferases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/ultrastructure , Ganglia, Invertebrate/metabolism , Ganglia, Invertebrate/ultrastructure , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System/ultrastructure , Neuromuscular Junction/metabolism , Neuromuscular Junction/ultrastructure , Neurotransmitter Agents/metabolism , Protein Processing, Post-Translational/physiology , Protein Transport/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/ultrastructure
12.
Neuroscientist ; 12(4): 291-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16840705

ABSTRACT

Synapses are packed with mitochondria, complex organelles with roles in energy metabolism, cell signaling, and calcium homeostasis. However, the precise mechanisms by which mitochondria influence neurotrans mission remain undefined. In this review, the authors discuss pharmacological and genetic analyses of synaptic mitochondrial function, focusing on their role in Ca2+ buffering and ATP production. Additionally, they will summarize recent data that implicate synaptic mitochondria in the regulation of neurotransmitter release during intense neuronal activity and link these findings to the pathogenesis of neurodegenerative diseases that feature disrupted synaptic mitochondria, including amyotrophic lateral sclerosis and hereditary spastic paraplegia.


Subject(s)
Mitochondria/physiology , Synapses/physiology , Adenosine Triphosphate/biosynthesis , Animals , Calcium/metabolism , Humans , Neurodegenerative Diseases/physiopathology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Synaptic Transmission/physiology
13.
Neuron ; 47(3): 365-78, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16055061

ABSTRACT

In a forward screen for genes affecting neurotransmission in Drosophila, we identified mutations in dynamin-related protein (drp1). DRP1 is required for proper cellular distribution of mitochondria, and in mutant neurons, mitochondria are largely absent from synapses, thus providing a genetic tool to assess the role of mitochondria at synapses. Although resting Ca2+ is elevated at drp1 NMJs, basal synaptic properties are barely affected. However, during intense stimulation, mutants fail to maintain normal neurotransmission. Surprisingly, FM1-43 labeling indicates normal exo- and endocytosis, but a specific inability to mobilize reserve pool vesicles, which is partially rescued by exogenous ATP. Using a variety of drugs, we provide evidence that reserve pool recruitment depends on mitochondrial ATP production downstream of PKA signaling and that mitochondrial ATP limits myosin-propelled mobilization of reserve pool vesicles. Our data suggest a specific role for mitochondria in regulating synaptic strength.


Subject(s)
Drosophila/physiology , Mitochondria/physiology , Neuromuscular Junction/physiology , Synapses/physiology , Synaptic Vesicles/physiology , Animals , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeletal Proteins , Drosophila/growth & development , Drosophila/metabolism , Drosophila/ultrastructure , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Electric Stimulation/methods , Endocytosis , GTP Phosphohydrolases/isolation & purification , GTP Phosphohydrolases/physiology , GTP-Binding Proteins , Larva , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Mutation , Myosin Light Chains/metabolism , Myosins/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/ultrastructure , Neuropeptides/genetics , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission , Tissue Distribution , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...