Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(17): 15824-32, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21934945

ABSTRACT

We present the development of a laser system capable of generating bandwidths sufficient to support a sub 30 fs pulse at 910 nm. These pulses have been amplified to 500 mJ of energy at 2 Hz in two stages. The contrast measurements show that the initial seed is clean and suggests that the close in contrast is limited by the evaluation stretcher and compressor. Such a system is suitable for seeding high energy high power OPCPA systems based on KD*P.

2.
Philos Trans A Math Phys Eng Sci ; 364(1840): 689-710, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16483958

ABSTRACT

Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.

SELECTION OF CITATIONS
SEARCH DETAIL
...