Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(6): 731-740, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37748870

ABSTRACT

Endopeptidases IdeS and IdeZ (streptococcal virulence factors that specifically cleave IgG heavy chains) are of particular interest because of their potential use in biotechnology, medicine, and veterinary. Genes encoding these enzymes were cloned and expressed in Escherichia coli heterologous expression system (ideS was cloned from a Streptococcus pyogenes collection strain; ideZ from Streptococcus zooepidemicus was synthesized). The 6His-tag was introduced into the amino acid sequence of each endopeptidase, and IdeS and IdeZ were purified by metal affinity chromatography to an apparent homogeneity (according to polyacrylamide gel electrophoresis). Purified enzymes were active against human and animal IgGs; their specificity toward human IgGs was confirmed by polyacrylamide gel electrophoresis. Recombinant IdeZ was used for immunological analysis of equine strangles infection (diagnostics and determination of the titer of specific antibodies in blood). Hence, IdeZ can be used in veterinary and sanitary microbiology to diagnose infections caused by Streptococcus equi and S. zooepidemicus in addition to its application in medicine and biotechnology.


Subject(s)
Endopeptidases , Insulysin , Humans , Animals , Horses , Endopeptidases/genetics , Amino Acid Sequence , Biotechnology , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Immunosuppressive Agents
2.
Protein Expr Purif ; 207: 106274, 2023 07.
Article in English | MEDLINE | ID: mdl-37084838

ABSTRACT

Lysostaphin is a zinc-dependent endopeptidase that is effective against both antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus aureus. Lysostaphin is typically purified on cation-exchange or metal-chelate affinity resins, and there are data indicating potential influence of the chromatographic resin on the lysostaphin activity. In this study, we systematically investigated the impact of the resin used to purify the recombinant lysostaphin on its activity. To this end, recombinant lysostaphin with an additional histidine tag at the C-terminus was purified using a cation-exchange resin, three types of nickel-chelate resins with different strength of metal ion binding, or a zinc-chelate resin. Lysostaphin samples purified on the cation-exchange resin (WorkBeads 40S), the nickel-chelate resin with a strong nickel ion binding (WorkBeads NiMAC), and the zinc-chelate resin (WorkBeads NTA with immobilized zinc ions) had equal activity. On the contrary, the activity of lysostaphin preparations purified on nickel-chelate resins with medium (WorkBeads Ni-NTA) and relatively weak (WorkBeads Ni-IDA) nickel ion binding was significantly reduced. The decrease in activity can be explained by the interaction of lysostaphin with the nickel ions leached from the resin and is caused by either the exchange of the zinc ion in the lysostaphin active center with a nickel ion from the resin, or binding of an additional ion that inhibits the enzymatic activity. Removal of the metal ions from the active site of lysostaphin and subsequent incorporation of the native zinc ions lead to complete restoration of the activity of the enzyme.


Subject(s)
Lysostaphin , Nickel , Nickel/chemistry , Metals/chemistry , Chelating Agents/chemistry , Zinc/chemistry , Chromatography, Affinity/methods , Anti-Bacterial Agents
3.
Molecules ; 24(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395814

ABSTRACT

Antibacterial lysins are promising proteins that are active against both antibiotic-susceptible and antibiotic-resistant bacterial strains. However, a major limitation of antibacterial lysins is their fast elimination from systemic circulation. PEGylation increases the plasma half-life of lysins but renders them inactive. Here we report the construction of a fusion protein of lysostaphin, a potent anti-staphylococcal lysin, and an albumin-binding domain from streptococcal protein G. The resulting fusion protein was less active than the parent enzyme lysostaphin, but it still retained significant antibacterial activity even when bound to serum albumin. The terminal half-life of the fusion protein in rats was five-fold greater than that of lysostaphin (7.4 vs. 1.5 h), and the area under the curve increased more than 115 times. Most importantly, this increase in systemic circulation time compensated for the decrease in activity. The plasma from rats that received an injection of the fusion protein retained bactericidal activity for up to 7 h, while plasma from rats that received plain lysostaphin lacked any detectable activity after 4 h. To the best of our knowledge, this is the first report of an antibacterial lysin with both improved pharmacokinetic parameters and prolonged bactericidal activity in the systemic circulation.


Subject(s)
Bacterial Proteins , Lysostaphin , Recombinant Fusion Proteins , Serum Albumin/chemistry , Staphylococcus aureus/growth & development , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/pharmacokinetics , Bacterial Proteins/pharmacology , Female , Lysostaphin/chemistry , Lysostaphin/genetics , Lysostaphin/pharmacokinetics , Lysostaphin/pharmacology , Rats , Rats, Wistar , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/pharmacology
4.
Molecules ; 24(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100806

ABSTRACT

The increasing prevalence of antibiotic-resistant strains of pathogenic bacteria is a major healthcare problem. Antibacterial lysins are enzymes that cleave the peptidoglycan of the bacterial cell wall. These proteins hold potential as a supplement or an alternative to traditional antibiotics since they are active against antibiotic resistant strains. However, antibacterial lysins are rapidly eliminated from the systemic circulation, which limits their application. Dimerization of an anti-pneumococcal lysin Cpl-1 has been demonstrated to decrease the clearance rate of this protein in mice. In the present work, we constructed a dimer of an anti-staphylococcal lysin lysostaphin by fusing it with an anti-parallel α-helical dimerization domain. Lysostaphin dimer had a more favorable pharmacokinetic profile with increased terminal half-life and area under the curve (AUC) values compared to monomeric lysostaphin. However, the staphylolytic activity of dimerized lysostaphin was decreased. This decrease in activity was likely caused by the dimerization; since the catalytic efficacy of lysostaphin dimer towards pentaglycine peptide was unaltered. Our results demonstrate that, although dimerization is indeed beneficial for the pharmacokinetics of antibacterial lysins, this approach might not be suitable for all lysins, as it can negatively affect the lysin activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Lysostaphin/chemistry , Lysostaphin/pharmacokinetics , Protein Multimerization , Amino Acid Sequence , Area Under Curve , Catalysis , Enzyme Activation , Lysostaphin/metabolism , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Staphylococcus/drug effects
5.
Nucleic Acids Res ; 40(20): 10107-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22965118

ABSTRACT

Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed.


Subject(s)
DNA Restriction Enzymes/genetics , Genome, Archaeal , Genome, Bacterial , DNA Modification Methylases/genetics , DNA Restriction Enzymes/classification , Deoxyribonucleases, Type I Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...