Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 140(3): 582-598, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28137726

ABSTRACT

New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases.


Subject(s)
Cell Differentiation/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/pathology , Gene Expression Regulation/genetics , Models, Biological , Pluripotent Stem Cells/physiology , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Cell Movement/genetics , Cells, Cultured , DNA Methylation/genetics , Fetus , Fragile X Syndrome/genetics , Gene Regulatory Networks , Humans , Male , Mice , Neurogenesis , Transfection , Trinucleotide Repeats/genetics
2.
Sci Rep ; 5: 13317, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26304831

ABSTRACT

Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity.


Subject(s)
Antigens, CD/metabolism , Cell Differentiation/physiology , Lectins/metabolism , N-Acetylneuraminic Acid/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Sialyltransferases/metabolism , Enzyme Activation , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , Glycosylation , Humans
4.
Cell Res ; 21(11): 1551-63, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21894191

ABSTRACT

Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications. Using lectin arrays, we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples, and identified a small group of lectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types. These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined, regardless of the laboratory of origin, the culture conditions, the somatic cell type reprogrammed, or the reprogramming method used. We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry, and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation. Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases, which may underlie these differences in protein glycosylation and lectin binding. Taken together, our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells, and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations.


Subject(s)
Biomarkers/metabolism , Glycomics , Lectins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biotin/chemistry , Biotin/metabolism , Cell Separation , Cells, Cultured , Embryonic Stem Cells/cytology , Fucosyltransferases/metabolism , Gene Expression Profiling , Glycosylation , Humans , Induced Pluripotent Stem Cells/cytology , Lectins/chemistry , Protein Array Analysis , Protein Binding , Sialyltransferases/metabolism
5.
PLoS One ; 6(8): e23018, 2011.
Article in English | MEDLINE | ID: mdl-21857983

ABSTRACT

Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC--including induced pluripotent--lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation.


Subject(s)
Aneuploidy , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Culture Techniques , Cell Line , Female , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Mice , Spectral Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL