Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Hand Microsurg ; 16(3): 100051, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39035862

ABSTRACT

Purpose: As stakeholders seek to improve patient outcomes while maintaining cost-effectiveness in an increasingly expensive healthcare system, metrics such as patient satisfaction are becoming more important. This present study sought to identify factors associated with and independently predictive of better surgical satisfaction two years following hand and wrist surgery. Methods: Patients undergoing hand and wrist surgery at an urban outpatient institution were enrolled preoperatively into a surgical registry and assessed two years postoperatively. Patient satisfaction with surgery was measured at two years postoperatively with the Surgical Satisfaction Questionnaire (SSQ-8). Bivariate analysis determined associations between postoperative satisfaction and patient demographics, injury specifiers, medical history, and multiple patient-reported outcomes (PROs). Multivariable analysis determined independent predictors of two-year postoperative satisfaction following hand and wrist surgery. Results: Better surgical satisfaction was associated with having never smoked, no preoperative opioid use, lack of an accompanying legal claim, lack of a workers compensation claim, no clinical history of depression/anxiety, less comorbidities, and higher preoperative expectations.Various PROs relating to function, pain, activity, and general health at both baseline and two years demonstrated associations with postoperative satisfaction. Multivariable analysis confirmed that never smoking, lack of a legal claim, and better preoperative Brief Michigan Hand Questionnaire scores were independently predictive of better surgical satisfaction two years following hand and wrist surgery. Conclusion: At two years following hand and wrist surgery, better patient satisfaction was best predicted by never smoking, no related legal claim, and better baseline Brief Michigan Hand Questionnaire scores. Level of evidence: III.

2.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315422

ABSTRACT

Absorption of photons in atomically thin materials has become a challenge in the realization of ultrathin, high-performance optoelectronics. While numerous schemes have been used to enhance absorption in 2D semiconductors, such enhanced device performance in scalable monolayer photodetectors remains unattained. Here, we demonstrate wafer-scale integration of monolayer single-crystal MoS2 photodetectors with a nitride-based resonant plasmonic metasurface to achieve a high detectivity of 2.58 × 1012 Jones with a record-low dark current of 8 pA and long-term stability over 40 days. Upon comparison with control devices, we observe an overall enhancement factor of >100; this can be attributed to the local strong EM field enhanced photogating effect by the resonant plasmonic metasurface. Considering the compatibility of 2D semiconductors and hafnium nitride with the Si CMOS process and their scalability across wafer sizes, our results facilitate the smooth incorporation of 2D semiconductor-based photodetectors into the fields of imaging, sensing, and optical communication applications.

3.
Light Sci Appl ; 13(1): 1, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38161209

ABSTRACT

Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.

4.
Nat Commun ; 14(1): 4747, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550303

ABSTRACT

High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·µm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 µA/µm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.

6.
ACS Nano ; 17(15): 14442-14448, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37489978

ABSTRACT

Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS2 that support polariton propagation lengths of up to 60 µm. The polaritons form through the strong coupling of excitons with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. We observe that the propagation length increases with the number of dielectric pairs due to the increased quality factor of the supporting distributed Bragg reflector. Furthermore, a longer propagation length is observed as the guided or BSW content of the polariton is increased. Our results provide a practical approach for the systematic engineering of long-range energy transport mediated by exciton-polaritons in TMD layers. Along with the accessibility of large area TMDs, our work enables applications for practical TMD-based polaritonic devices that operate at room temperature.

7.
Nat Commun ; 14(1): 2649, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156799

ABSTRACT

Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.

8.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37003256

ABSTRACT

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Subject(s)
Microbiota , Respiratory Tract Infections , Animals , Female , Mice , Pregnancy , Dendritic Cells , Diet , Propionates
9.
Cell Host Microbe ; 31(4): 634-649.e8, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37003258

ABSTRACT

Drug platforms that enable the directed delivery of therapeutics to sites of diseases to maximize efficacy and limit off-target effects are needed. Here, we report the development of PROT3EcT, a suite of commensal Escherichia coli engineered to secrete proteins directly into their surroundings. These bacteria consist of three modular components: a modified bacterial protein secretion system, the associated regulatable transcriptional activator, and a secreted therapeutic payload. PROT3EcT secrete functional single-domain antibodies, nanobodies (Nbs), and stably colonize and maintain an active secretion system within the intestines of mice. Furthermore, a single prophylactic dose of a variant of PROT3EcT that secretes a tumor necrosis factor-alpha (TNF-α)-neutralizing Nb is sufficient to ablate pro-inflammatory TNF levels and prevent the development of injury and inflammation in a chemically induced model of colitis. This work lays the foundation for developing PROT3EcT as a platform for the treatment of gastrointestinal-based diseases.


Subject(s)
Colitis , Single-Domain Antibodies , Animals , Mice , Escherichia coli , Colitis/chemically induced , Colitis/therapy , Tumor Necrosis Factor-alpha/metabolism
10.
J Am Coll Health ; : 1-8, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36701489

ABSTRACT

Objective: This study explored the predictive relationship among international student trauma responses, visa status anxiety, and perceived institutional support. Researchers also sought to understand the relationship between help seeking behaviors and trauma exposure responses. Participants: International students (n = 172) from U.S. colleges and universities enrolled since March 2020. Methods: Data were collected via an electronic survey administered during the fall 2020 academic term. Results: The model was found to be significant, explaining 67% of the variance of student trauma responses. Anxiety surrounding students' ability to stay in the U.S. was found to be the greatest contributor to the model. Additionally, particular clusters of trauma symptomatology were significantly correlated with help seeking from specific individuals within student networks. Finally, students reported moderate levels of mental health help seeking behaviors, with friends and family being the most likely sources sought out for help. Conclusions: Despite focus on students' health and wellness concerns related to the COVID-19 pandemic, visa policy uncertainty was a primary driver of self-reported trauma symptomatology at the onset of the pandemic.

11.
ACS Nano ; 16(6): 8827-8836, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35435652

ABSTRACT

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging. Here, we demonstrate a vertical WSe2 PV device with a high PCE of 5.44% under one-sun AM1.5G illumination. We reveal the multifunctional nature of a tungsten oxide layer, which promotes a stronger internal electric field by overcoming limitations imposed by the Fermi-level pinning at WSe2 interfaces and acts as an electron-selective contact in combination with monolayer graphene. Together with the developed bottom contact scheme, this simple yet effective contact engineering method improves the PCE by more than five times.

12.
Trends Pharmacol Sci ; 43(9): 772-786, 2022 09.
Article in English | MEDLINE | ID: mdl-35232591

ABSTRACT

Engineered microbes are rapidly being developed for the delivery of therapeutic modalities to sites of disease. Escherichia coli Nissle 1917 (EcN), a genetically tractable probiotic with a well-established human safety record, is emerging as a favored chassis. Here, we summarize the latest progress in rationally engineered variants of EcN for the treatment of infectious diseases, metabolic disorders, and inflammatory bowel diseases (IBDs) when administered orally, as well as cancers when injected directly into tumors or the systemic circulation. We also discuss emerging studies that raise potential safety concerns regarding these EcN-based strains as therapeutics due to their secretion of a genotoxic colibactin that can promote the formation of DNA double-stranded breaks in mammalian DNA.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Mammals , Probiotics/therapeutic use
13.
Nat Nanotechnol ; 17(2): 182-189, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34857931

ABSTRACT

Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.

14.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34860143

ABSTRACT

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Subject(s)
Asthma/immunology , HMGB1 Protein/metabolism , Interleukin-33/metabolism , Receptors, Purinergic P2/metabolism , Animals , Asthma/metabolism , Asthma/physiopathology , Biomarkers/metabolism , Case-Control Studies , Disease Progression , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL
15.
Atmos Environ (1994) ; 274: 1-13, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-37941818

ABSTRACT

Collection methods critical load values and total nitrogen budgets for high-elevation and fog-impacted sites requires reliable cloud and fog water deposition estimates. The cost and labor intensity of cloud/fog water sample collection have made it difficult to conduct long-term studies that would provide the data needed to develop accurate estimates. Current understanding of fog formation, transport, and the role of fog and cloud deposition in hydrogeological and biogeochemical cycles is incomplete due, in part, to lack of a concerted interdisciplinary approach to the problem. Historically, these obstacles have limited interest in and collection of cloud and fog water samples. In addition to measurements of cloud/fog chemical composition, documenting fog/cloud deposition fluxes of pollutant and nutrient species requires knowledge of cloud/fog physical properties, frequency and duration of fog/cloud interception with landscapes, properties of vegetation on those landscapes, and properties of the wind that drive droplet/vegetation interactions. Because drop deposition efficiency is dependent on drop size, it is also important to consider variations in fog/cloud drop composition with drop size as species enriched in larger/ smaller drops will experience enhanced/reduced deposition rates. This paper presents summary results from a small U.S. cloud water monitoring network that operated from the mid-nineties through 2011, as well as a brief qualitative review of other cloud and fog water studies conducted in the United States (including Puerto Rico), Europe, South America/Pacific, and Asia. Current collection methods are also reviewed. Recent scientific efforts by the National Atmospheric Deposition Program's (NADP) Total Deposition Science Committee and NADP's Critical Loads of Atmospheric Deposition Science Committee have identified occult (cloud/fog) deposition as a "need" in developing critical loads for ecosystems that experience.

16.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Article in English | MEDLINE | ID: mdl-34786712

ABSTRACT

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Subject(s)
Congresses as Topic/trends , Genetic Engineering/trends , Genetic Therapy/trends , Research Report , Synthetic Biology/trends , Animals , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/trends , Gene Targeting/methods , Gene Targeting/trends , Genetic Engineering/methods , Genetic Therapy/methods , Humans , Killer Cells, Natural/immunology , Machine Learning/trends , Synthetic Biology/methods , T-Lymphocytes/immunology
17.
Front Cell Dev Biol ; 9: 737880, 2021.
Article in English | MEDLINE | ID: mdl-34631716

ABSTRACT

Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.

18.
Nano Lett ; 21(14): 6245-6252, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34260259

ABSTRACT

Light-matter coupling in excitonic materials has been the subject of intense recent investigations due to emergence of new materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room temperature with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D HOIP crystals without the necessity of an external cavity. We report the concurrent occurrence of multiple orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (>100 nm) crystals and near-unity absorption in thin (<20 nm) crystals. We observe resonances with quality factors of >250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.

19.
20.
PLoS Pathog ; 16(7): e1008651, 2020 07.
Article in English | MEDLINE | ID: mdl-32658914

ABSTRACT

Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling.


Subject(s)
Airway Remodeling/immunology , HMGB1 Protein/immunology , Inflammation/immunology , Lymphocytes/immunology , Muscle, Smooth/immunology , Animals , Mice , Muscle, Smooth/pathology , Receptor for Advanced Glycation End Products/immunology
SELECTION OF CITATIONS
SEARCH DETAIL