Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Nutr ; 120(1): 257-268, 2024 07.
Article in English | MEDLINE | ID: mdl-38705359

ABSTRACT

The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.


Subject(s)
Adiposity , Inflammation , Obesity , Humans , Inflammation/immunology , Obesity/immunology , Adipose Tissue/metabolism , Adipose Tissue/immunology , Immunity
3.
Nat Metab ; 6(4): 651-658, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499765

ABSTRACT

Metformin, a widely used first-line treatment for type 2 diabetes (T2D), is known to reduce blood glucose levels and suppress appetite. Here we report a significant elevation of the appetite-suppressing metabolite N-lactoyl phenylalanine (Lac-Phe) in the blood of individuals treated with metformin across seven observational and interventional studies. Furthermore, Lac-Phe levels were found to rise in response to acute metformin administration and post-prandially in patients with T2D or in metabolically healthy volunteers.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Phenylalanine , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Phenylalanine/blood , Phenylalanine/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Male , Female , Blood Glucose/metabolism , Appetite Depressants/therapeutic use , Appetite Depressants/pharmacology , Appetite/drug effects , Adult , Middle Aged , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL