Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746225

ABSTRACT

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

2.
J Mol Cell Cardiol ; 156: 33-44, 2021 07.
Article in English | MEDLINE | ID: mdl-33781820

ABSTRACT

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates cardiac contraction through modulation of actomyosin interactions mediated by the protein's amino terminal (N')-region (C0-C2 domains, 358 amino acids). On the other hand, dephosphorylation of cMyBP-C during myocardial injury results in cleavage of the 271 amino acid C0-C1f region and subsequent contractile dysfunction. Yet, our current understanding of amino terminus region of cMyBP-C in the context of regulating thin and thick filament interactions is limited. A novel cardiac-specific transgenic mouse model expressing cMyBP-C, but lacking its C0-C1f region (cMyBP-C∆C0-C1f), displayed dilated cardiomyopathy, underscoring the importance of the N'-region in cMyBP-C. Further exploring the molecular basis for this cardiomyopathy, in vitro studies revealed increased interfilament lattice spacing and rate of tension redevelopment, as well as faster actin-filament sliding velocity within the C-zone of the transgenic sarcomere. Moreover, phosphorylation of the unablated phosphoregulatory sites was increased, likely contributing to normal sarcomere morphology and myoarchitecture. These results led us to hypothesize that restoration of the N'-region of cMyBP-C would return actomyosin interaction to its steady state. Accordingly, we administered recombinant C0-C2 (rC0-C2) to permeabilized cardiomyocytes from transgenic, cMyBP-C null, and human heart failure biopsies, and we found that normal regulation of actomyosin interaction and contractility was restored. Overall, these data provide a unique picture of selective perturbations of the cardiac sarcomere that either lead to injury or adaptation to injury in the myocardium.


Subject(s)
Carrier Proteins/genetics , Myocardial Contraction/genetics , Myocardium/metabolism , Protein Interaction Domains and Motifs , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heart/diagnostic imaging , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism , Phosphorylation , Sarcomeres/metabolism
3.
Cardiovasc Res ; 115(14): 1986-1997, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31050699

ABSTRACT

AIMS: A 25-base pair deletion in the cardiac myosin binding protein-C (cMyBP-C) gene (MYBPC3), proposed to skip exon 33, modifies the C10 domain (cMyBP-CΔC10mut) and is associated with hypertrophic cardiomyopathy (HCM) and heart failure, affecting approximately 100 million South Asians. However, the molecular mechanisms underlying the pathogenicity of cMyBP-CΔC10mutin vivo are unknown. We hypothesized that expression of cMyBP-CΔC10mut exerts a poison polypeptide effect leading to improper assembly of cardiac sarcomeres and the development of HCM. METHODS AND RESULTS: To determine whether expression of cMyBP-CΔC10mut is sufficient to cause HCM and contractile dysfunction in vivo, we generated transgenic (TG) mice having cardiac-specific protein expression of cMyBP-CΔC10mut at approximately half the level of endogenous cMyBP-C. At 12 weeks of age, significant hypertrophy was observed in TG mice expressing cMyBP-CΔC10mut (heart weight/body weight ratio: 4.43 ± 0.11 mg/g non-transgenic (NTG) vs. 5.34 ± 0.25 mg/g cMyBP-CΔC10mut, P < 0.05). Furthermore, haematoxylin and eosin, Masson's trichrome staining, as well as second-harmonic generation imaging revealed the presence of significant fibrosis and a greater relative nuclear area in cMyBP-CΔC10mut hearts compared with NTG controls. M-mode echocardiography analysis revealed hypercontractile hearts (EF: 53.4%±2.9% NTG vs. 66.4% ± 4.7% cMyBP-CΔC10mut; P < 0.05) and early diastolic dysfunction (E/E': 28.7 ± 3.7 NTG vs. 46.3 ± 8.4 cMyBP-CΔC10mut; P < 0.05), indicating the presence of an HCM phenotype. To assess whether these changes manifested at the myofilament level, contractile function of single skinned cardiomyocytes was measured. Preserved maximum force generation and increased Ca2+-sensitivity of force generation were observed in cardiomyocytes from cMyBP-CΔC10mut mice compared with NTG controls (EC50: 3.6 ± 0.02 µM NTG vs. 2.90 ± 0.01 µM cMyBP-CΔC10mut; P < 0.0001). CONCLUSION: Expression of cMyBP-C protein with a modified C10 domain is sufficient to cause contractile dysfunction and HCM in vivo.


Subject(s)
Cardiomyopathy, Hypertrophic/metabolism , Carrier Proteins/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sarcomeres/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Remodeling , Animals , Calcium Signaling , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/genetics , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Gene Regulatory Networks , Genetic Predisposition to Disease , Mice, Transgenic , Mutation , Myocytes, Cardiac/pathology , Protein Domains , Sarcomeres/genetics , Sarcomeres/pathology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
4.
J Mol Cell Cardiol ; 129: 236-246, 2019 04.
Article in English | MEDLINE | ID: mdl-30862451

ABSTRACT

Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood. Therefore, we aimed to determine if abrogation of cMyBP-C proteolysis in association with calpain, a calcium-activated protease, confers cardioprotection during I/R injury. Calpain is activated in both human ischemic heart samples and ischemic mouse myocardium where cMyBP-C is dephosphorylated and undergoes proteolysis. Moreover, cMyBP-C is a substrate for calpain proteolysis and cleaved by calpain at residues 272-TSLAGAGRR-280, a domain termed as the calpain-target site (CTS). Cardiac-specific transgenic (Tg) mice in which the CTS motif was ablated were bred into a cMyBP-C null background. These Tg mice were conclusively shown to possess a normal basal structure and function by analysis of histology, electron microscopy, immunofluorescence microscopy, Q-space MRI of tissue architecture, echocardiography, and hemodynamics. However, the genetic ablation of the CTS motif conferred resistance to calpain-mediated proteolysis of cMyBP-C. Following I/R injury, the loss of the CTS reduced infarct size compared to non-transgenic controls. Collectively, these findings demonstrate the physiological significance of calpain-targeted cMyBP-C proteolysis and provide a rationale for studying inhibition of calpain-mediated proteolysis of cMyBP-C as a therapeutic target for cardioprotection.


Subject(s)
Calpain/metabolism , Cardiotonic Agents/metabolism , Carrier Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Animals , Female , Heart Function Tests , Humans , Male , Mice, Transgenic , Middle Aged , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/physiopathology , Phosphorylation , Proteolysis
5.
Sci Transl Med ; 11(476)2019 01 23.
Article in English | MEDLINE | ID: mdl-30674652

ABSTRACT

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Mutation/genetics , Myosins/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Cardiomyopathy, Hypertrophic/physiopathology , Disease Models, Animal , Haploinsufficiency , Humans , Mice , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Phenotype , ortho-Aminobenzoates/metabolism
6.
Am J Physiol Heart Circ Physiol ; 316(3): H543-H553, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30575436

ABSTRACT

Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.


Subject(s)
Capsaicin/therapeutic use , Cardiotonic Agents/therapeutic use , Myocardial Infarction/drug therapy , Nociception , Sensory System Agents/therapeutic use , Skin/innervation , Animals , Capsaicin/pharmacology , Cardiotonic Agents/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Peripheral Nerves/drug effects , Peripheral Nerves/physiology , Protein Kinase C/metabolism , Receptor, Bradykinin B2/metabolism , Reflex , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Sensory System Agents/pharmacology
7.
JACC Basic Transl Sci ; 2(2): 122-131, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28596995

ABSTRACT

The degradation and release of cardiac myosin binding protein-C (cMyBP-C) upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb) production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in CVD patients. Importantly, cMyBP-C-AAbs were significantly detected in ACS patient sera upon arrival to the emergency department, particularly in STEMI patients. Patients positive for cMyBP-C-AAbs had a reduced LVEF and elevated levels of clinical biomarkers of MI. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in ACS patients prior to the infarction.

9.
J Mol Cell Cardiol ; 102: 83-93, 2017 01.
Article in English | MEDLINE | ID: mdl-27955979

ABSTRACT

Cardiomyopathies are a leading cause of heart failure and are often caused by mutations in sarcomeric genes, resulting in contractile dysfunction and cellular damage. This may stimulate the production of a robust proinflammatory response. To determine whether myocardial inflammation is associated with cardiac dysfunction in dilated cardiomyopathy (DCM) caused by MYBPC3 mutation, we used the well-characterized cMyBP-C(t/t) mouse model of DCM at 3months of age. Compared to wild type (WT) mice, DCM mice exhibited significantly decreased fractional shortening (36.4±2% vs. 15.5±1.0%, p<0.0001) and significantly increased spleen weight (5.3±0.3 vs. 7.2±0.4mg/mm, p=0.002). Intriguingly, flow cytometry analysis revealed a significant increase in total (CD45+CD11b+Ly6C-MHCII+F480+) macrophages (6.5±1.4% vs. 14.8±1.4%, p=0.002) and classically activated (CD45+CD11b+Ly6C-MHCII+F480+CD206-) proinflammatory (M1) macrophages (3.4±0.8% vs. 10.3±1.2%, p=0.0009) in DCM hearts as compared with WT hearts. These results were further confirmed by immunofluorescence analysis of heart tissue sections. Splenic red pulp (CD11b+Ly6C+MHCIIlowF480hi) macrophages were significantly elevated (1.3±0.1% vs. 2.4±0.1%, p=0.0001) in DCM compared to WT animals. Serum cytokine analysis in DCM animals exhibited a significant increase (0.65±0.2 vs. 2.175±0.5pg/mL, p=0.02) in interleukin (IL)-6 compared to WT animals. Furthermore, RNA-seq analysis revealed the upregulation of inflammatory pathways in the DCM hearts. Together, these data indicate a robust proinflammatory response in DCM hearts, likely in response to cellular damage triggered by MYBPC3 mutation and resultant contractile dysfunction.


Subject(s)
Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/genetics , Carrier Proteins/genetics , Mutation , Myocarditis/etiology , Animals , Biomarkers , Cardiomyopathy, Dilated/diagnosis , Cluster Analysis , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , Genetic Predisposition to Disease , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Transgenic , Myocardial Contraction , Myocarditis/metabolism , Splenomegaly , Ventricular Dysfunction
10.
J Mol Biomark Diagn ; 7(6)2016 Nov.
Article in English | MEDLINE | ID: mdl-27990320

ABSTRACT

A 25-basepair deletion variant of MYBPC3 occurs at high frequency in individuals of South Asian descent and is estimated to affect 55 million people worldwide, carrying an increased likelihood of cardiomyopathy. Since this variant is prevalent and severe in this subpopulation, quick and affordable screening to provide risk-assessment to guide treatment for these patients is critical. An RNaseH qPCR assay was developed to quickly and specifically diagnose the presence of the 25-basepair deletion variant in MYBPC3. RNAseH-blocked nucleotide primers were designed to identify the presence or absence of the wild type MYBPC3 allele or the genomic sequence containing the 25-basepair deletion. Using this assay, three blinded operators were able to accurately determine the genotype from human genomic DNA samples from blood and saliva using a qPCR thermocycler. Furthermore, positive variant subjects were examined by both electrocardiography and echocardiography for the presence of cardiomyopathy. A simple, robust assay was established, verified and validated that can be automated to detect the presence of the highly prevalent 25-basepair deletion MYBPC3 variant using both blood and saliva samples. The assay will provide quick and accurate prescreening of individuals at high risk for cardiomyopathies and allow for better clinical identification of 25-basepair deletion MYBPC3 carriers in large cohort epidemiological studies.

11.
J Mol Cell Cardiol ; 99: 47-56, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27616755

ABSTRACT

Myocardial infarction (MI) leads to loss and degradation of contractile cardiac tissue followed by sterile inflammation of the myocardium through activation and recruitment of innate and adaptive cells of the immune system. Recently, it was shown that cardiac myosin binding protein-C (cMyBP-C), a protein of the cardiac sarcomere, is degraded following MI, releasing a predominant N-terminal 40-kDa fragment (C0C1f) into myocardial tissue and the systemic circulation. We hypothesized that early release of C0C1f contributes to the initiation of inflammation and plays a key role in recruitment and activation of immune cells. Therefore, we investigated the role of C0C1f on macrophage/monocyte activation using both mouse bone marrow-derived macrophages and human monocytes. Here we demonstrate that C0C1f leads to macrophage/monocyte activation in vitro. Furthermore, C0C1f induces strong upregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and interleukin-1ß (IL-1ß)) in cultured murine macrophages and human monocytes, resulting in a pro-inflammatory phenotype. We identified the toll-like receptor 4 (TLR4), toll-like receptor 2 (TLR2), and Advanced Glycosylation End Product-Specific Receptor (RAGE) as potential receptors for C0C1f whose activation leads to mobilization of the NFκB signaling pathway, a central mediator of the pro-inflammatory signaling cascade. Thus, C0C1f appears to be a key player in the initiation of inflammatory processes and might also play an important role upon MI.


Subject(s)
Carrier Proteins/metabolism , Inflammation/metabolism , Protein Interaction Domains and Motifs , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cytokines/metabolism , Gene Expression , Humans , Inflammation/genetics , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Monocytes/immunology , Monocytes/metabolism , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
12.
J Am Heart Assoc ; 5(3): e002836, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-27068630

ABSTRACT

BACKGROUND: The geometric organization of myocytes in the ventricular wall comprises the structural underpinnings of cardiac mechanical function. Cardiac myosin binding protein-C (MYBPC3) is a sarcomeric protein, for which phosphorylation modulates myofilament binding, sarcomere morphology, and myocyte alignment in the ventricular wall. To elucidate the mechanisms by which MYBPC3 phospho-regulation affects cardiac tissue organization, we studied ventricular myoarchitecture using generalized Q-space imaging (GQI). GQI assessed geometric phenotype in excised hearts that had undergone transgenic (TG) modification of phospho-regulatory serine sites to nonphosphorylatable alanines (MYBPC3(AllP-/(t/t))) or phospho-mimetic aspartic acids (MYBPC3(AllP+/(t/t))). METHODS AND RESULTS: Myoarchitecture in the wild-type (MYBPC3(WT)) left-ventricle (LV) varied with transmural position, with helix angles ranging from -90/+90 degrees and contiguous circular orientation from the LV mid-myocardium to the right ventricle (RV). Whereas MYBPC3(AllP+/(t/t)) hearts were not architecturally distinct from MYBPC3(WT), MYBPC3(AllP-/(t/t)) hearts demonstrated a significant reduction in LV transmural helicity. Null MYBPC3((t/t)) hearts, as constituted by a truncated MYBPC3 protein, demonstrated global architectural disarray and loss in helicity. Electron microscopy was performed to correlate the observed macroscopic architectural changes with sarcomere ultrastructure and demonstrated that impaired phosphorylation of MYBPC3 resulted in modifications of the sarcomere aspect ratio and shear angle. The mechanical effect of helicity loss was assessed through a geometric model relating cardiac work to ejection fraction, confirming the mechanical impairments observed with echocardiography. CONCLUSIONS: We conclude that phosphorylation of MYBPC3 contributes to the genesis of ventricular wall geometry, linking myofilament biology with multiscale cardiac mechanics and myoarchitecture.


Subject(s)
Carrier Proteins/metabolism , Heart Failure/pathology , Heart Ventricles/pathology , Myocytes, Cardiac/pathology , Animals , Biomechanical Phenomena , Carrier Proteins/genetics , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Genetic Predisposition to Disease , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Heart Ventricles/ultrastructure , Image Interpretation, Computer-Assisted , Mice, Transgenic , Microscopy, Electron, Transmission , Mutation , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Phenotype , Phosphorylation , Sarcomeres/metabolism , Sarcomeres/pathology , Ventricular Function, Left
13.
Oxid Med Cell Longev ; 2015: 424751, 2015.
Article in English | MEDLINE | ID: mdl-26508994

ABSTRACT

Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C((t/t))) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.


Subject(s)
Cardiomyopathy, Dilated/pathology , Carrier Proteins/genetics , Oxidative Stress , Adolescent , Adult , Animals , Cardiomyopathy, Dilated/genetics , Disease Models, Animal , Echocardiography , Electron Spin Resonance Spectroscopy , Female , Glutathione/metabolism , Heart/physiopathology , Humans , Male , Malondialdehyde/metabolism , Mice , Middle Aged , Mutation , Myocardium/metabolism , Protein Carbonylation , Young Adult
14.
Proteomics Clin Appl ; 8(7-8): 569-77, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24888514

ABSTRACT

Cardiac myosin binding protein-C (cMyBP-C) is a regulatory protein of the contractile apparatus within the cardiac sarcomere. Ischemic injury to the heart during myocardial infarction (MI) results in the cleavage of cMyBP-C in a phosphorylation-dependent manner and release of an N-terminal fragment (C0C1f) into the circulation. C0C1f has been shown to be pathogenic within cardiac tissue, leading to the development of heart failure. Based on its high levels and early release into the circulation post-MI, C0C1f may serve as a novel biomarker for diagnosing MI more effectively than current clinically used biomarkers. Over time, circulating C0C1f could trigger an autoimmune response leading to myocarditis and progressive cardiac dysfunction. Given the importance of cMyBP-C phosphorylation state in the context of proteolytic cleavage and release into the circulation post-MI, understanding the posttranslational modifications (PTMs) of cMyBP-C would help in further elucidating the role of this protein in health and disease. Accordingly, recent studies have implemented the latest proteomics approaches to define the PTMs of cMyBP-C. The use of such proteomics assays may provide accurate quantitation of the levels of cMyBP-C in the circulation following MI, which could, in turn, demonstrate the efficacy of using plasma cMyBP-C as a cardiac-specific early biomarker of MI. In this review, we define the pathogenic and potential immunogenic effects of C0C1f on cardiac function in the post-MI heart. We also discuss the most advanced proteomics approaches now used to determine cMyBP-C PTMs with the aim of validating C0C1f as an early biomarker of MI.


Subject(s)
Carrier Proteins/metabolism , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Myocardial Ischemia/complications , Proteomics/methods , Animals , Biomarkers/chemistry , Biomarkers/metabolism , Carrier Proteins/chemistry , Carrier Proteins/immunology , Humans , Myocardial Infarction/complications , Myocardial Infarction/etiology , Myocardial Infarction/immunology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...