Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(32): 6186-6194, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35794014

ABSTRACT

Midbrain dopamine neurons play central physiological roles in voluntary movement, reward learning, and motivated behavior. Inhibitory signaling at somatodendritic dopamine D2 receptor (D2R) synapses modulates excitability of dopamine neurons. The neuropeptide neurotensin is expressed by many inputs to the midbrain and induces LTD of D2R synaptic currents (LTDDA); however, the source of neurotensin that is responsible for LTDDA is not known. Here we show, in brain slices from male and female mice, that LTDDA is driven by neurotensin released by dopamine neurons themselves. Optogenetic stimulation of dopamine neurons was sufficient to induce LTDDA in the substantia nigra, but not the VTA, and was dependent on neurotensin receptor signaling, postsynaptic calcium, and vacuolar-type H+-ATPase activity in the postsynaptic cell. These findings reveal a novel form of signaling between dopamine neurons involving release of the peptide neurotensin, which may act as a feedforward mechanism to increase dopamine neuron excitability.SIGNIFICANCE STATEMENT Dopamine neurons in the midbrain play a critical role in reward learning and the initiation of movement. Aberrant dopamine neuron function is implicated in a range of diseases and disorders, including Parkinson's disease, schizophrenia, obesity, and substance use disorders. D2 receptor-mediated PSCs are produced by a rare form of dendrodendritic synaptic transmission between dopamine neurons. These D2 receptor-mediated PSCs undergo LTD following application of the neuropeptide neurotensin. Here we show that release of neurotensin by dopamine neurons themselves is sufficient to induce LTD of dopamine transmission in the substantia nigra. Neurotensin signaling therefore mediates a second form of interdopamine neuron communication and may provide a mechanism by which dopamine neurons maintain excitability when nigral dopamine is elevated.


Subject(s)
Dopaminergic Neurons , Neurotensin/metabolism , Substantia Nigra/metabolism , Animals , Dopamine , Dopaminergic Neurons/metabolism , Female , Male , Mice , Neuropeptides/metabolism
2.
J Pharmacol Exp Ther ; 382(2): 167-180, 2022 08.
Article in English | MEDLINE | ID: mdl-35688478

ABSTRACT

Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.


Subject(s)
Brain , Homeodomain Proteins , Oxycodone , Oxymorphone , Analgesics, Opioid/pharmacology , Animals , Brain/drug effects , Female , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred BALB C , Oxycodone/pharmacology , Oxymorphone/pharmacology , Reward
3.
Mov Disord ; 33(12): 1928-1937, 2018 12.
Article in English | MEDLINE | ID: mdl-30440089

ABSTRACT

BACKGROUND: Parkinson's disease is characterized by the progressive loss of dopamine neurons in the substantia nigra, leading to severe motor deficits. Although the disease likely begins to develop years before observable motor symptoms, the specific morphological and functional alterations involved are poorly understood. OBJECTIVES: MitoPark mice lack the gene coding for mitochondrial transcription factor A specifically in dopamine neurons, which over time produces a progressive decline of neuronal function and related behavior that phenotypically mirrors human parkinsonism. Our previous work identified a progressive decrease in cell capacitance in dopamine neurons from MitoPark mice, possibly suggesting reduced membrane surface area. We therefore sought to identify and quantify somatodendritic parameters in this model across age. METHODS: We used whole-cell patch clamp and fluorescent labeling to quantify somatodendritic morphology of single, neurobiotin-filled dopamine neurons in acutely isolated brain slices from MitoPark mice. RESULTS: We found that MitoPark mice exhibit an adult-onset, age-dependent reduction of neuritic branching and soma size in dopamine neurons. This decline proceeds similarly in MitoPark mice of both sexes, but does not begin until after the age that early decrements in ion channel physiology and behavior have previously been observed. CONCLUSIONS: A progressive and severe decline in somatodendritic morphology occurs prior to cell death, but is not responsible for the subtle decrements observable in the earliest stages of neurodegeneration. This work could help identify the ideal time window for specific treatments to halt disease progression and avert debilitating motor deficits in Parkinson's patients. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Motor Activity/physiology , Parkinson Disease/physiopathology , Animals , Disease Models, Animal , Dopaminergic Neurons/pathology , Mice, Transgenic , Parkinson Disease/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology
4.
Psychopharmacology (Berl) ; 235(9): 2777, 2018 09.
Article in English | MEDLINE | ID: mdl-30094500

ABSTRACT

After publication of this paper, the authors determined an error in the calculation of the norepinephrine standard concentrations for the HPLC calibration curves.

5.
Int J Neuropsychopharmacol ; 21(4): 361-370, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29272412

ABSTRACT

Background: Neurotensin is a peptide that modulates central dopamine neurotransmission and dopamine-related behaviors. Methamphetamine self-administration increases neurotensin levels in the ventral tegmental area, but the consequences for self-administration behavior have not been described. Here we test the hypothesis that antagonizing neurotensin receptors in the ventral tegmental area attenuates the acquisition of methamphetamine self-administration and methamphetamine intake. Methods: We implanted mice with an indwelling catheter in the right jugular vein and bilateral cannulae directed at the ventral tegmental area. Mice were then trained to nose-poke for i.v. infusions of methamphetamine (0.1 mg/kg/infusion) on a fixed ratio 3 schedule. Results: Mice receiving microinfusions of the neurotensin NTS1/NTS2 receptor antagonist SR142948A in the ventral tegmental area (10 ng/side) prior to the first 5 days of methamphetamine self-administration required more sessions to reach acquisition criteria. Methamphetamine intake was decreased in SR142948A-treated mice both during training and later during maintenance of self-administration. Drug seeking during extinction, cue-induced reinstatement, and progressive ratio schedules was also reduced in the SR142948A group. The effects of SR142948A were not related to changes in basal locomotor activity or methamphetamine psychomotor properties. In both SR142948A- and saline-treated mice, a strong positive correlation between methamphetamine intake and enhanced locomotor activity was observed. Conclusion: Our results suggest that neurotensin input in the ventral tegmental area during initial methamphetamine exposure contributes to the acquisition of methamphetamine self-administration and modulates later intake and methamphetamine-seeking behavior in mice. Furthermore, our results highlight the role of endogenous neurotensin in the ventral tegmental area in the reinforcing efficacy of methamphetamine, independent of its psychomotor effects.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Neurotensin/metabolism , Receptors, Neurotensin/antagonists & inhibitors , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Animals , Central Nervous System Stimulants/administration & dosage , Male , Methamphetamine/administration & dosage , Mice , Mice, Inbred DBA , Self Medication
6.
Psychopharmacology (Berl) ; 233(11): 2045-2054, 2016 06.
Article in English | MEDLINE | ID: mdl-26944052

ABSTRACT

RATIONALE: Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. OBJECTIVES: We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. METHODS: Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. RESULTS: Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. CONCLUSIONS: These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.


Subject(s)
Brain Chemistry/drug effects , Dopamine/metabolism , Phenylalanine/pharmacology , Tyrosine/pharmacology , Animals , Male , Norepinephrine/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Tyrosine/metabolism , Ventral Striatum/drug effects , Ventral Striatum/metabolism
7.
J Urol ; 172(2): 529-32, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15247721

ABSTRACT

PURPOSE: We determined the risk factors for osteoporosis and spinal fractures in men with prostate cancer receiving androgen deprivation therapy. MATERIALS AND METHODS: We performed a retrospective analysis of 87 consecutive men with prostate cancer receiving androgen deprivation therapy referred for evaluation of osteoporosis. Data were comprised of lateral thoracolumbar radiographs, bone densitometry, serum biochemistry and a detailed assessment of osteoporotic risk factors. Multivariate regression analysis was used to determine the major risk factors for osteoporosis and spinal fractures. RESULTS: There were 38 (44%) men who were 74.5 years old with radiographic evidence of spinal fractures. They had an initial mean prostate specific antigen of 52.8 ng/ml and had received androgen deprivation therapy for a mean of 39.6 months (95% confidence interval 28.7 to 50.4). Mean spinal (quantitative computerized tomography t-score -4.2) and femoral neck bone mineral densities (dual energy x-ray absorptiometry t-score -2.1) were significantly lower than in men without spinal fractures (p < 0.001 for all measurements). In the regression analysis the duration of androgen deprivation therapy (p = 0.002), serum 25-hydroxyvitamin D levels (p = 0.003) and a history of alcohol excess (defined as more than 4 standard drinks daily, p = 0.04) were the main determinants of spinal fractures. CONCLUSIONS: Prolonged androgen deprivation therapy, low serum 25-hydroxyvitamin D levels and a history of alcohol excess are important risk factors for osteoporosis and spinal fractures in men with prostate cancer.


Subject(s)
Osteoporosis/epidemiology , Prostatic Neoplasms/epidemiology , Spinal Fractures/epidemiology , Vitamin D/analogs & derivatives , Aged , Alcohol Drinking , Androgen Antagonists/therapeutic use , Anilides/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Comorbidity , Flutamide/therapeutic use , Goserelin/therapeutic use , Humans , Male , Multivariate Analysis , Nitriles , Prostatic Neoplasms/drug therapy , Retrospective Studies , Risk Factors , Time Factors , Tosyl Compounds , Vitamin D/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...