Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(9): 4517-4527, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32297743

ABSTRACT

JAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases. Particularly, pSTAT3 is observed in response to the treatment with inhibitors of oncogenic signaling pathways such as EGFR, MAPK, and AKT and is associated with resistance or poorer response to agents targeting these pathways. Among the JAK family kinases, JAK1 has been shown to be the primary driver of STAT3 phosphorylation and signaling; therefore, selective JAK1 inhibition can be a viable means to overcome such treatment resistances. Herein, an account of the medicinal chemistry optimization from the promiscuous kinase screening hit 3 to the candidate drug 21 (AZD4205), a highly selective JAK1 kinase inhibitor, is reported. Compound 21 has good preclinical pharmacokinetics. Compound 21 displayed an enhanced antitumor activity in combination with an approved EGFR inhibitor, osimertinib, in a preclinical non-small-cell lung cancer (NSCLC) xenograft NCI-H1975 model.


Subject(s)
Indoles/therapeutic use , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
Cancer Res ; 78(23): 6691-6702, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30297535

ABSTRACT

: PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity. SIGNIFICANCE: These findings describe a new inhibitor of PARP6 and identify a novel function of PARP6 in regulating activation of Chk1 in breast cancer cells.


Subject(s)
ADP Ribose Transferases/antagonists & inhibitors , Breast Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1/metabolism , Disease Models, Animal , Female , Humans , Mice , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Signal Transduction/drug effects , Substrate Specificity , Xenograft Model Antitumor Assays
3.
PLoS One ; 13(7): e0200826, 2018.
Article in English | MEDLINE | ID: mdl-30036377

ABSTRACT

BRD4 is a transcriptional co-activator functioning to recruit regulatory complexes to acetylated chromatin. A subset of High-grade Serous Ovarian Cancer (HGSOC) patients are typified by focal, recurrent BRD4 gene amplifications. Despite previously described cancer dependencies, it is unclear whether BRD4 amplification events are oncogenic in HGSOC. We find that physiologically relevant levels of expression of BRD4 isoforms in non-transformed ovarian cells result in cellular transformation. Transcriptional profiling of BRD4-transformed ovarian cells, and BRD4-amplified HGSOC patient samples revealed shared expression patterns, including enriched MYC, and E2F1 gene signatures. Furthermore, we demonstrate that a novel BET inhibitor, AZD5153, is highly active in BRD4-amplified patient derived xenografts and uncover Neuregulin-1 as a novel BRD4 effector. Experiments involving Neuregulin-1 inhibition and exogenous addition, demonstrate Neuregulin-1 as necessary and sufficient for BRD4-mediated transformation. This study demonstrates the oncogenic potential of BRD4 amplification in cancer and establishes BRD4-amplified HGSOC as a potential patient population that could benefit from BET inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds, 2-Ring/pharmacology , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Piperazines/pharmacology , Transcription Factors/genetics , Algorithms , Animals , Carcinogenesis/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Cystadenocarcinoma, Serous/genetics , Female , Gene Expression , Gene Expression Profiling , Humans , Mice , Neoplasm Transplantation , Neuregulin-1/metabolism , Nuclear Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Proteins/genetics , Proteins/metabolism , Pyrazoles , Pyridazines , Signal Transduction , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem Lett ; 28(8): 1336-1341, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29559278

ABSTRACT

The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).


Subject(s)
Casein Kinase II/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazines/pharmacology , Cell Line, Tumor , Drug Design , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Structure-Activity Relationship
5.
J Med Chem ; 61(3): 1061-1073, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29301085

ABSTRACT

Checkpoint kinase 1 (CHK1) inhibitors are potential cancer therapeutics that can be utilized for enhancing the efficacy of DNA damaging agents. Multiple small molecule CHK1 inhibitors from different chemical scaffolds have been developed and evaluated in clinical trials in combination with chemotherapeutics and radiation treatment. Scaffold morphing of thiophene carboxamide ureas (TCUs), such as AZD7762 (1) and a related series of triazoloquinolines (TZQs), led to the identification of fused-ring bicyclic CHK1 inhibitors, 7-carboxamide thienopyridines (7-CTPs), and 7-carboxamide indoles. X-ray crystal structures reveal a key intramolecular noncovalent sulfur-oxygen interaction in aligning the hinge-binding carboxamide group to the thienopyridine core in a coplanar fashion. An intramolecular hydrogen bond to an indole NH was also effective in locking the carboxamide in the preferred bound conformation to CHK1. Optimization on the 7-CTP series resulted in the identification of lead compound 44, which displayed respectable drug-like properties and good in vitro and in vivo potency.


Subject(s)
Checkpoint Kinase 1/antagonists & inhibitors , Drug Discovery , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1/chemistry , DNA Damage , Humans , Indoles/chemistry , Models, Molecular , Protein Domains , Pyridines/chemistry
6.
Sci Transl Med ; 9(394)2017 06 14.
Article in English | MEDLINE | ID: mdl-28615361

ABSTRACT

Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , ras Proteins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Humans , Mice , Mutation/genetics , Oligonucleotides, Antisense/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , Xenograft Model Antitumor Assays , ras Proteins/antagonists & inhibitors
7.
Bioorg Med Chem Lett ; 26(19): 4775-4780, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27578247

ABSTRACT

During the lead generation and optimization of PARP inhibitors blocking centrosome clustering, it was discovered that increasing hydrogen bond acceptor (HBA) strength improved cellular potency but led to elevated Caco2 and MDR1 efflux and thus poor oral bioavailability. Conversely, compounds with lower efflux had reduced potency. The project team was able to improve the bioavailability by reducing efflux through systematic modifications to the strength of the HBA by changing the electronic properties of neighboring groups, whilst maintaining sufficient acceptor strength for potency. Additionally, it was observed that enantiomers with different potency showed similar efflux, which is consistent with the promiscuity of efflux transporters. Eventually, a balance between potency and low efflux was achieved for a set of lead compounds with good bioavailability which allowed the project to progress towards establishing in vivo pharmacokinetic/pharmacodynamic relationships.


Subject(s)
Centrosome/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Dogs , Humans , Hydrogen Bonding , Madin Darby Canine Kidney Cells , Mice , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Rats
8.
ACS Med Chem Lett ; 7(3): 300-5, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985319

ABSTRACT

The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and ß-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts.

9.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26546219

ABSTRACT

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Subject(s)
Centrosome/metabolism , Phthalazines/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Administration, Oral , Animals , Binding Sites , Caco-2 Cells , Centrosome/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , HeLa Cells , Humans , Microsomes/metabolism , Molecular Conformation , Molecular Dynamics Simulation , Phthalazines/administration & dosage , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Structure, Tertiary , Rats , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism
10.
Blood ; 123(6): 905-13, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24363397

ABSTRACT

Upregulation of Pim kinases is observed in several types of leukemias and lymphomas. Pim-1, -2, and -3 promote cell proliferation and survival downstream of cytokine and growth factor signaling pathways. AZD1208 is a potent, highly selective, and orally available Pim kinase inhibitor that effectively inhibits all three isoforms at <5 nM or <150 nM in enzyme and cell assays, respectively. AZD1208 inhibited the growth of 5 of 14 acute myeloid leukemia (AML) cell lines tested, and sensitivity correlates with Pim-1 expression and STAT5 activation. AZD1208 causes cell cycle arrest and apoptosis in MOLM-16 cells, accompanied by a dose-dependent reduction in phosphorylation of Bcl-2 antagonist of cell death, 4EBP1, p70S6K, and S6, as well as increases in cleaved caspase 3 and p27. Inhibition of p4EBP1 and p-p70S6K and suppression of translation are the most representative effects of Pim inhibition in sensitive AML cell lines. AZD1208 inhibits the growth of MOLM-16 and KG-1a xenograft tumors in vivo with a clear pharmacodynamic-pharmacokinetic relationship. AZD1208 also potently inhibits colony growth and Pim signaling substrates in primary AML cells from bone marrow that are Flt3 wild-type or Flt3 internal tandem duplication mutant. These results underscore the therapeutic potential of Pim kinase inhibition for the treatment of AML.


Subject(s)
Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thiazolidines/pharmacology , Animals , Biphenyl Compounds/pharmacokinetics , Blotting, Western , Cell Cycle , Enzyme-Linked Immunosorbent Assay , Female , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-pim-1/metabolism , Thiazolidines/pharmacokinetics , Tissue Distribution , Tumor Cells, Cultured
11.
ACS Med Chem Lett ; 4(8): 800-5, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-24900749

ABSTRACT

In this letter, we describe the design, synthesis, and structure-activity relationship of 5-anilinopyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase. Property-based optimization of early leads using the 7-oxetan-3-yl amino group led to a series of matched molecular pairs with lower lipophilicity, decreased affinity for human plasma proteins, and reduced binding to the hERG ion channel. Agents in this study were shown to modulate pAKT(S129), a direct substrate of CK2, in vitro and in vivo, and exhibited tumor growth inhibition when administered orally in a murine DLD-1 xenograft.

13.
ACS Med Chem Lett ; 3(4): 278-83, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-24900464

ABSTRACT

In this paper we describe a series of 3-cyano-5-aryl-7-aminopyrazolo[1,5-a]pyrimidine hits identified by kinase-focused subset screening as starting points for the structure-based design of conformationally constrained 6-acetamido-indole inhibitors of CK2. The synthesis, SAR, and effects of this novel series on Akt signaling and cell proliferation in vitro are described.

14.
ACS Med Chem Lett ; 3(9): 705-9, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-24900538

ABSTRACT

Trk receptor tyrosine kinases have been implicated in cancer and pain. A crystal structure of TrkA with AZ-23 (1a) was obtained, and scaffold hopping resulted in two 5/6-bicyclic series comprising either imidazo[4,5-b]pyridines or purines. Further optimization of these two fusion series led to compounds with subnanomolar potencies against TrkA kinase in cellular assays. Antitumor effects in a TrkA-driven mouse allograft model were demonstrated with compounds 2d and 3a.

15.
Bioorg Med Chem Lett ; 19(3): 1026-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19097792

ABSTRACT

A series of amidoheteroaryl compounds were designed and synthesized as inhibitors of B-Raf kinase. Several compounds from the series show excellent potency in biochemical, phenotypic and mode of action cellular assays. Potent examples from the series have also demonstrated good plasma exposure following an oral dose in rodents and activity against the Ras-Raf pathway in tumor bearing mice.


Subject(s)
Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemical synthesis , Mutation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Administration, Oral , Animals , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , Rats , Structure-Activity Relationship , raf Kinases/metabolism , ras Proteins/metabolism
17.
J Med Chem ; 51(15): 4672-84, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18646745

ABSTRACT

The design, synthesis and biological evaluation of a series of 4-aminopyrazolylpyrimidines as potent Trk kinase inhibitors is reported. High-throughput screening identified a promising hit in the 4-aminopyrazolylpyrimidine chemotype. Initial optimization of the series led to more potent Trk inhibitors. Further optimization using two strategies resulted in significant improvement of physical properties and led to the discovery of 10z (AZ-23), a potent, orally bioavailable Trk A/B inhibitor. The compound offers the potential to test the hypothesis that modulation of Trk activity will be of benefit in the treatment of cancer and other indications in vivo.


Subject(s)
Amines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptor, trkA/antagonists & inhibitors , Animals , Cell Line , Humans , Male , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Rats , Rats, Wistar , Receptor, trkA/chemistry , Receptor, trkA/metabolism , Structure-Activity Relationship
18.
J Med Chem ; 49(16): 4805-8, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884290

ABSTRACT

The ability of molecular docking, using the program Glide and an MM-GBSA postdocking scoring protocol, to correctly rank a number of congeneric kinase inhibitors was assessed. The approach was successful for the cases considered and suggests that this may be useful for the design of inhibitors in the lead optimization phase of drug discovery.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Quantitative Structure-Activity Relationship , Aniline Compounds/chemistry , Aurora Kinases , Binding Sites , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Models, Molecular , Morpholines/chemistry , Piperidines/chemistry , Protein Conformation , Pyridines/chemistry , Pyrimidines/chemistry , Thermodynamics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
19.
J Chem Inf Model ; 46(1): 401-15, 2006.
Article in English | MEDLINE | ID: mdl-16426074

ABSTRACT

Four of the most well-known, commercially available docking programs, FlexX, GOLD, GLIDE, and ICM, have been examined for their ligand-docking and virtual-screening capabilities. The relative performance of the programs in reproducing the native ligand conformation from starting SMILES strings for 164 high-resolution protein-ligand complexes is presented and compared. Applying only the native scoring functions, the latest versions of these four docking programs were also used to conduct virtual screening for 12 protein targets of therapeutic interest, involving both publicly available structures and AstraZeneca in-house structures. The capability of the four programs to correctly rank-order target-specific active compounds over alternative binders and nonbinders (decoys plus randomly selected compounds) and thereby enrich a small subset of a screening library is compared. Enrichments from the virtual-screening experiments are contrasted with those obtained with alternative 3D shape-matching and 2D similarity database-search methods.

20.
J Chem Inf Model ; 45(4): 1122-33, 2005.
Article in English | MEDLINE | ID: mdl-16045307

ABSTRACT

The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm has been used to generate robust models that are able to classify compounds as active or inactive in a number of G-protein-coupled receptor assays. The models have been tested against progressively more challenging validation sets where steps are taken to ensure that compounds in the validation set are chemically and structurally distinct from the training set. In the most challenging example, we simulate a lead-hopping experiment by excluding an entire class of compounds (defined by a core substructure) from the training set. The left-out active compounds comprised approximately 40% of the actives. The model trained on the remaining compounds is able to recall 75% of the actives from the "new" lead series while correctly classifying >99% of the 5000 inactives included in the validation set.


Subject(s)
Computer Simulation , Dopamine Agents/chemistry , Drug Design , Models, Chemical , Models, Statistical , Receptors, G-Protein-Coupled/chemistry , Databases as Topic , Dopamine Agents/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...