Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 808, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30778057

ABSTRACT

Major hydrocarbon accumulations occur in traps associated with salt domes. Whereas some of these hydrocarbons remain to be extracted for economic use, significant amounts have degraded in the subsurface, yielding mineral precipitates as byproducts. Salt domes of the Gulf of Mexico Basin typically exhibit extensive deposits of carbonate that form as cap rock atop salt structures. Despite previous efforts to model cap rock formation, the details of subsurface reactions (including the role of microorganisms) remain largely unknown. Here we show that cap rock mineral precipitation occurred via closed-system sulfate reduction, as indicated by new sulfur isotope data. 13C-depleted carbonate carbon isotope compositions and low clumped isotope-derived carbonate formation temperatures indicate that microbial, sulfate-dependent, anaerobic oxidation of methane (AOM) contributed to carbonate formation. These findings suggest that AOM serves as an unrecognized methane sink that reduces methane emissions in salt dome settings perhaps associated with an extensive, deep subsurface biosphere.


Subject(s)
Carbonates/chemistry , Geologic Sediments/microbiology , Methane/metabolism , Anaerobiosis , Carbonates/metabolism , Gulf of Mexico , Louisiana , Oxidation-Reduction , Sulfates/chemistry , Sulfur , Sulfur Isotopes/analysis , Texas
2.
Geobiology ; 16(3): 219-236, 2018 05.
Article in English | MEDLINE | ID: mdl-29577549

ABSTRACT

Despite a surge of recent work, the evolution of mid-Proterozoic oceanic-atmospheric redox remains heavily debated. Constraining the dynamics of Proterozoic redox evolution is essential to determine the role, if any, that anoxia played in protracting the development of eukaryotic diversity. We present a multiproxy suite of high-resolution geochemical measurements from a drill core capturing the ~1.4 Ga Xiamaling Formation, North China Craton. Specifically, we analyzed major and trace element concentrations, sulfur and molybdenum isotopes, and iron speciation not only to better understand the local redox conditions but also to establish how relevant our data are to understanding the contemporaneous global ocean. Our results suggest that throughout deposition of the Xiamaling Formation, the basin experienced varying degrees of isolation from the global ocean. During deposition of the lower organic-rich shales (130-85 m depth), the basin was extremely restricted, and the reservoirs of sulfate and trace metals were drawn down almost completely. Above a depth of 85 m, shales were deposited in dominantly euxinic waters that more closely resembled a marine system and thus potentially bear signatures of coeval seawater. In the most highly enriched sample from this upper interval, the concentration of molybdenum is 51 ppm with a δ98 Mo value of +1.7‰. Concentrations of Mo and other redox-sensitive elements in our samples are consistent with a deep ocean that was largely anoxic on a global scale. Our maximum δ98 Mo value, in contrast, is high compared to published mid-Proterozoic data. This high value raises the possibility that the Earth's surface environments were transiently more oxygenated at ~1.4 Ga compared to preceding or postdating times. More broadly, this study demonstrates the importance of integrating all available data when attempting to reconstruct surface O2 dynamics based on rocks of any age.


Subject(s)
Biodiversity , Eukaryota/classification , Fossils , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Biological Evolution , China , Hypoxia , Iron Compounds/analysis , Isotopes/analysis , Molybdenum/analysis , Oceans and Seas , Sulfur/analysis , Trace Elements/analysis
3.
Geobiology ; 15(6): 767-783, 2017 11.
Article in English | MEDLINE | ID: mdl-28856796

ABSTRACT

The diversification of macro-organisms over the last 500 million years often coincided with the development of new environmental niches. Microbial diversification over the last 4 billion years likely followed similar patterns. However, linkages between environmental settings and microbial ecology have so far not been described from the ancient rock record. In this study, we investigated carbon, nitrogen, and molybdenum isotopes, and iron speciation in five non-marine stratigraphic units of the Neoarchean Fortescue Group, Western Australia, that are similar in age (2.78-2.72 Ga) but differ in their hydro-geologic setting. Our data suggest that the felsic-dominated and hydrologically open lakes of the Bellary and Hardey formations were probably dominated by methanogenesis (δ13 Corg  = -38.7 ± 4.2‰) and biologic N2 fixation (δ15 Nbulk  =-0.6 ± 1.0‰), whereas the Mt. Roe, Tumbiana and Kylena Formations, with more mafic siliciclastic sediments, preserve evidence of methanotrophy (δ13 Corg as low as -57.4‰, δ13 Ccarb as low as -9.2‰) and NH3 loss under alkaline conditions. Evidence of oxygenic photosynthesis is recorded only in the closed evaporitic Tumbiana lakes marked by abundant stromatolites, limited evidence of Fe and S cycling, fractionated Mo isotopes (δ98/95 Mo = +0.4 ± 0.4‰), and the widest range in δ13 Corg (-57‰ to -15‰), suggesting oxidative processes and multiple carbon fixation pathways. Methanotrophy in the three mafic settings was probably coupled to a combination of oxidants, including O2 and SO42- . Overall, our results may indicate that early microbial evolution on the Precambrian Earth was in part influenced by geological parameters. We speculate that expanding habitats, such as those linked to continental growth, may have been an important factor in the evolution of life.


Subject(s)
Biological Evolution , Cyanobacteria/metabolism , Geologic Sediments/chemistry , Lakes/chemistry , Ecosystem , Paleontology , Western Australia
4.
Geobiology ; 15(3): 401-426, 2017 05.
Article in English | MEDLINE | ID: mdl-28387009

ABSTRACT

The Athel silicilyte is an enigmatic, hundreds of meters thick, finely laminated quartz deposit, in which silica precipitated in deep water (>~100-200 m) at the Ediacaran-Cambrian boundary in the South Oman Salt Basin. In contrast, Meso-Neoproterozoic sinks for marine silica were dominantly restricted to peritidal settings. The silicilyte is known to contain sterane biomarkers for demosponges, which today are benthic, obligately aerobic organisms. However, the basin has previously been described as permanently sulfidic and time-equivalent shallow-water carbonate platform and evaporitic facies lack silica. The Athel silicilyte thus represents a unique and poorly understood depositional system with implications for late Ediacaran marine chemistry and paleoecology. To address these issues, we made petrographic observations, analyzed biomarkers in the solvent-extractable bitumen, and measured whole-rock iron speciation and oxygen and silicon isotopes. These data indicate that the silicilyte is a distinct rock type both in its sedimentology and geochemistry and in the original biology present as compared to other facies from the same time period in Oman. The depositional environment of the silicilyte, as compared to the bounding shales, appears to have been more reducing at depth in sediments and possibly bottom waters with a significantly different biological community contributing to the preserved biomarkers. We propose a conceptual model for this system in which deeper, nutrient-rich waters mixed with surface seawater via episodic mixing, which stimulated primary production. The silica nucleated on this organic matter and then sank to the seafloor, forming the silicilyte in a sediment-starved system. We propose that the silicilyte may represent a type of environment that existed elsewhere during the Neoproterozoic. These environments may have represented an important locus for silica removal from the oceans.


Subject(s)
Biomarkers/analysis , Geologic Sediments/chemistry , Geological Phenomena , Ecosystem , Iron/analysis , Oman , Oxygen/analysis , Silicon/analysis
5.
Geobiology ; 15(2): 211-224, 2017 03.
Article in English | MEDLINE | ID: mdl-27997754

ABSTRACT

Records of the Ediacaran carbon cycle (635-541 million years ago) include the Shuram excursion (SE), the largest negative carbonate carbon isotope excursion in Earth history (down to -12‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13 C of seawater dissolved inorganic carbon. Here, we present carbonate and organic carbon isotope (δ13 Ccarb and δ13 Corg ) records from the Ediacaran Doushantuo Formation along a proximal-to-distal transect across the Yangtze Platform of South China as a test of the spatial variation of the SE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13 Corg are highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that the SE is a primary marine signature. Data compilations demonstrate that the SE was also accompanied globally by parallel negative shifts of δ34 S of carbonate-associated sulfate (CAS) and increased 87 Sr/86 Sr ratio and coastal CAS concentration, suggesting elevated continental weathering and coastal marine sulfate concentration during the SE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of the SE and coexisting δ13 Corg records of the Doushantuo, with likely relevance to the SE in other regions. In this model, we infer continued marine redox stratification through the SE but with increased availability of oxidants (e.g., O2 and sulfate) limited to marginal near-surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving the SE, future models must consider the evidence for spatial heterogeneity in δ13 C presented in this study.


Subject(s)
Carbon Cycle , Carbon Isotopes/analysis , Fossils , Geologic Sediments/chemistry , China
6.
Geobiology ; 14(5): 457-68, 2016 09.
Article in English | MEDLINE | ID: mdl-27027776

ABSTRACT

The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis.


Subject(s)
Aquatic Organisms/metabolism , Fossils , Geologic Sediments/chemistry , Seawater/chemistry , Animals , China , Oceans and Seas , Oxidation-Reduction
7.
Geobiology ; 13(1): 15-32, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25354129

ABSTRACT

Offshore facies of the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada, preserve microbialites with unusual morphology. These microbialites grew in water depths greater than several tens of meters and correlate with high-relief conical stromatolites of the more proximal September Lake reef complex. The gross morphology of these microbial facies consists of ridge-like vertical supports draped by concave-upward, subhorizontal elements, resulting in tent-shaped cuspate microbialites with substantial primary void space. Morphological and petrographic analyses suggest a model wherein penecontemporaneous upward growth of ridge elements and development of subhorizontal draping elements initially resulted in a buoyantly supported, unlithified microbial form. Lithification began via precipitation within organic elements during microbialite growth. Mineralization either stabilized or facilitated collapse of initially neutrally buoyant microbialite forms. Microbial structures and breccias were then further stabilized by precipitation of marine herringbone cement. During late-stage diagenesis, remaining void space was occluded by ferroan dolomite cement. Cuspate microbialites are most similar to those found in offshore facies of Neoarchean carbonate platforms and to unlithified, buoyantly supported microbial mats in modern ice-covered Antarctic lakes. We suggest that such unusual microbialite morphologies are a product of the interaction between motile and non-motile communities under nutrient-limiting conditions, followed by early lithification, which served to preserve the resultant microbial form. The presence of marine herringbone cement, commonly associated with high dissolved inorganic carbon (DIC), low O2 conditions, also suggests growth in association with reducing environments at or near the seafloor or in conjunction with a geochemical interface. Predominance of coniform stromatolite forms in the Proterozoic--across a variety of depositional environments--may thus reflect a combination of heterogeneous nutrient distribution, potentially driven by variable redox conditions, and an elevated carbonate saturation state, which permits preservation of these unusual microbialite forms.


Subject(s)
Cyanobacteria/growth & development , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Fossils , Nunavut
8.
Geobiology ; 12(5): 451-68, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24976102

ABSTRACT

Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.


Subject(s)
Chromatiaceae/genetics , Chromatiaceae/metabolism , Lakes/microbiology , Sulfur/metabolism , British Columbia , Genome, Bacterial , Molecular Sequence Data , Oxidation-Reduction , Phylogeography , Sequence Analysis, DNA
9.
Geobiology ; 12(2): 172-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24460948

ABSTRACT

Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.


Subject(s)
Geologic Sediments/microbiology , Iron/metabolism , Methane/metabolism , Sulfates/metabolism , Anaerobiosis , Atlantic Ocean , Oxidation-Reduction
10.
Geobiology ; 11(1): 3-14, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23176074

ABSTRACT

Acanthomorphic acritarch fossils, including some interpreted to be the fossils of the earliest animal embryos, first appear in the lower Doushantuo Formation of the Yangtze Gorges area (YGA). Further, the complete paleontological and geochemical record for the YGA has played a central role in defining the global biological and geochemical backdrop that presaged and witnessed the dawn of diverse animal life. Despite the importance of the YGA in our understanding of Neoproterozoic Earth history, basic aspects about its depositional history remain debated. Foremost among the controversies, extensively studied sections in the YGA were recently tied to deposition in an alkaline lake, casting new but contentious light on the environments of early animal evolution and the broader significance of geochemical records from the YGA. Arguments for a lacustrine setting hinged on the presence of trioctahedral clays (saponite-corrensite). However, this clay type commonly forms in other environments, including the weathering profiles of mafic and ultramafic volcanics. Using a coupled geochemical and sedimentological approach, we argue that the trioctahedral clays in the lower Doushantuo of the YGA are better explained as weathering products from a regional mafic-to-ultramafic hinterland delivered by rivers to a shelf or lagoon in the Yangtze Gorges Basin. These novel provenance relationships for YGA sediments and associated clays are consistent with a marine setting for the early animal records and must factor in our current understanding of the broader geochemical fabric of the Doushantuo Formation.


Subject(s)
Aluminum Silicates/chemistry , Fossils , Geologic Sediments/chemistry , Seawater/chemistry , Animals , Biological Evolution , China , Mass Spectrometry
11.
Geobiology ; 10(3): 223-35, 2012 May.
Article in English | MEDLINE | ID: mdl-22329601

ABSTRACT

Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biota , Fresh Water/microbiology , Geologic Sediments/microbiology , British Columbia , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
12.
13.
Geobiology ; 7(5): 566-76, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19796131

ABSTRACT

Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation.


Subject(s)
Calcium/analysis , Cyanobacteria/chemistry , Fossils , Geologic Sediments/microbiology , Bahamas , Carbon Isotopes/analysis , Cyanobacteria/cytology , Cyanobacteria/ultrastructure , Microscopy , Microscopy, Electron, Scanning
15.
Nature ; 452(7186): 456-9, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18368114

ABSTRACT

Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.


Subject(s)
Oxygen/analysis , Seawater/chemistry , Atmosphere/chemistry , Geologic Sediments/chemistry , History, Ancient , Molybdenum/analysis , Oceans and Seas , Oxygen/chemistry , Sulfides/chemistry , Time Factors
16.
Science ; 304(5667): 87-90, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-15066776

ABSTRACT

How much dissolved oxygen was present in the mid-Proterozoic oceans between 1.8 and 1.0 billion years ago is debated vigorously. One model argues for oxygenation of the oceans soon after the initial rise of atmospheric oxygen approximately 2.3 billion years ago. Recent evidence for H(2)S in some mid-Proterozoic marine basins suggests, however, that the deep ocean remained anoxic until much later. New molybdenum isotope data from modern and ancient sediments indicate expanded anoxia during the mid-Proterozoic compared to the present-day ocean. Consequently, oxygenation of the deep oceans may have lagged that of the atmosphere by over a billion years.

SELECTION OF CITATIONS
SEARCH DETAIL