Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
J Med Chem ; 67(1): 450-466, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38112278

ABSTRACT

With the aim of discovering small molecule inhibitors of the sporulation process in Clostridioides difficile, we prepared a series of C-7 α-(4-substituted-1H-1,2,3-triazol-1-yl)acetamide analogues of cefotetan, a known inhibitor of the C. difficile sporulation-specific protein target CdSpoVD. These analogues were evaluated using both in vitro binding assays with CdSpoVD and antisporulation assays against C. difficile. Further design concepts were aided utilizing the predicted docking scores (DS) using both AlphaFold (AF) models, and a crystal structure of the CdSpoVD protein (PDB 7RCZ). Despite being 1 order of magnitude more potent as a sporulation inhibitor than cefotetan, in vivo studies on compound 6a in a murine-model of C. difficile infection demonstrated comparable spore shedding capabilities as cefotetan. Importantly, compound 6a had no concerning broad spectrum antibacterial activities, toxicity, or hemolytic activity and thus has potential for further drug development.


Subject(s)
Cephamycins , Clostridioides difficile , Clostridium Infections , Animals , Mice , Cephamycins/metabolism , Clostridioides , Cefotetan/metabolism , Spores, Bacterial , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism
2.
Nat Commun ; 14(1): 7737, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007555

ABSTRACT

Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Clostridioides difficile/genetics , Dysbiosis , Multiomics , Diarrhea , Anti-Bacterial Agents/adverse effects , Biomarkers , Clostridium Infections/diagnosis , Cell Proliferation , Hospitals
3.
Microbiol Spectr ; 11(6): e0135223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815385

ABSTRACT

IMPORTANCE: There has been a decrease in healthcare-associated Clostridioides difficile infection in Australia, but an increase in the genetic diversity of infecting strains, and an increase in community-associated cases. Here, we studied the genetic relatedness of C. difficile isolated from patients at a major hospital in Melbourne, Australia. Diverse ribotypes were detected, including those associated with community and environmental sources. Some types of isolates were more likely to carry antimicrobial resistance determinants, and many of these were associated with mobile genetic elements. These results correlate with those of other recent investigations, supporting the observed increase in genetic diversity and prevalence of community-associated C. difficile, and consequently the importance of sources of transmission other than symptomatic patients. Thus, they reinforce the importance of surveillance for in both hospital and community settings, including asymptomatic carriage, food, animals, and other environmental sources to identify and circumvent important sources of C. difficile transmission.


Subject(s)
Clostridioides difficile , Clostridium Infections , Cross Infection , Animals , Humans , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Genomics , Cross Infection/epidemiology , Australia
4.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37073791

ABSTRACT

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Clostridium perfringens/metabolism , Virulence Factors , Inflammation , Interleukin-1beta/metabolism , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
5.
Hypertension ; 80(7): 1393-1402, 2023 07.
Article in English | MEDLINE | ID: mdl-37039016

ABSTRACT

Gut dysfunction has emerged as a contributor to hypertension, the leading risk factor for disease globally, including stroke, heart failure, and kidney disease. This is underpinned by breakdown of the homeostatic relationship connecting intestinal epithelial function, the microbiota and immune responses. Antihypertensive medications have been shown to reverse intestinal dysfunction and gut dysbiosis. However, the mechanisms underlying this restoration of gut structure and function remain largely unknown. In this review, we examine current knowledge supporting a role for impaired intestinal epithelial permeability in hypertension, focusing on electrolyte movement, the renin-angiotensin-aldosterone system, and the restorative effects of orally administered antihypertensive medications and antibiotics. Further work is required to determine if the association between intestinal dysfunction and hypertension is causal. This is a rapidly evolving field, with intestinal dysfunction and dysbiosis representing an area that may be exploited to improve treatment of hypertension and cardiovascular disease.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Dysbiosis/complications , Anti-Bacterial Agents/adverse effects , Gastrointestinal Microbiome/physiology
6.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675151

ABSTRACT

Apicomplexan infections, such as giardiasis and cryptosporidiosis, negatively impact a considerable proportion of human and commercial livestock populations. Despite this, the molecular mechanisms of disease, particularly the effect on the body beyond the gastrointestinal tract, are still poorly understood. To highlight host-parasite-microbiome biochemical interactions, we utilised integrated metabolomics-16S rRNA genomics and metabolomics-proteomics approaches in a C57BL/6J mouse model of giardiasis and compared these to Cryptosporidium and uropathogenic Escherichia coli (UPEC) infections. Comprehensive samples (faeces, blood, liver, and luminal contents from duodenum, jejunum, ileum, caecum and colon) were collected 10 days post infection and subjected to proteome and metabolome analysis by liquid and gas chromatography-mass spectrometry, respectively. Microbial populations in faeces and luminal washes were examined using 16S rRNA metagenomics. Proteome-metabolome analyses indicated that 12 and 16 key pathways were significantly altered in the gut and liver, respectively, during giardiasis with respect to other infections. Energy pathways including glycolysis and supporting pathways of glyoxylate and dicarboxylate metabolism, and the redox pathway of glutathione metabolism, were upregulated in small intestinal luminal contents and the liver during giardiasis. Metabolomics-16S rRNA genetics integration indicated that populations of three bacterial families-Autopobiaceae (Up), Desulfovibrionaceae (Up), and Akkermanasiaceae (Down)-were most significantly affected across the gut during giardiasis, causing upregulated glycolysis and short-chained fatty acid (SCFA) metabolism. In particular, the perturbed Akkermanasiaceae population seemed to cause oxidative stress responses along the gut-liver axis. Overall, the systems biology approach applied in this study highlighted that the effects of host-parasite-microbiome biochemical interactions extended beyond the gut ecosystem to the gut-liver axis. These findings form the first steps in a comprehensive comparison to ascertain the major molecular and biochemical contributors of host-parasite interactions and contribute towards the development of biomarker discovery and precision health solutions for apicomplexan infections.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Gastrointestinal Microbiome , Giardiasis , Microbiota , Mice , Animals , Humans , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Up-Regulation , Proteome/metabolism , Cryptosporidiosis/metabolism , Mice, Inbred C57BL , Cryptosporidium/metabolism , Metabolomics , Metabolome , Liver/metabolism , Oxidation-Reduction
7.
Nat Rev Microbiol ; 21(4): 260-274, 2023 04.
Article in English | MEDLINE | ID: mdl-36175770

ABSTRACT

The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.


Subject(s)
Enterobacteriaceae Infections , Microbiota , Humans
8.
Gut Microbes ; 14(1): 2117504, 2022.
Article in English | MEDLINE | ID: mdl-36045589

ABSTRACT

Clostridioides difficile is the most common cause of infectious antibiotic-associated diarrhea, with disease mediated by two major toxins TcdA and TcdB. In severe cases, systemic disease complications may arise, resulting in fatal disease. Systemic disease in animal models has been described, with thymic damage an observable consequence of severe disease in mice. Using a mouse model of C. difficile infection, we examined this disease phenotype, focussing on the thymus and serum markers of systemic disease. The efficacy of bezlotoxumab, a monoclonal TcdB therapeutic, to prevent toxin mediated systemic disease complications was also examined. C. difficile infection causes toxin-dependent thymic damage and CD4+CD8+ thymocyte depletion in mice. These systemic complications coincide with changes in biochemical markers of liver and kidney function, including increased serum urea and creatinine, and hypoglycemia. Administration of bezlotoxumab during C. difficile infection prevents systemic disease and thymic atrophy, without blocking gut damage, suggesting the leakage of gut contents into circulation may influence systemic disease. As the thymus has such a crucial role in T cell production and immune system development, these findings may have important implications in relapse of C. difficile disease and impaired immunity during C. difficile infection. The prevention of thymic atrophy and reduced systemic response following bezlotoxumab treatment, without altering colonic damage, highlights the importance of systemic disease in C. difficile infection, and provides new insights into the mechanism of action for this therapeutic.Abbreviations: Acute kidney injury (AKI); Alanine Transaminase (ALT); Aspartate Aminotransferase (AST); C. difficile infection (CDI); chronic kidney disease (CKD); combined repetitive oligo-peptides (CROPS); cardiovascular disease (CVD); Double positive (DP); hematoxylin and eosin (H&E); immunohistochemical (IHC); multiple organ dysfunction syndrome (MODS); phosphate buffered saline (PBS); standard error of the mean (SEM); surface layer proteins (SLP); Single positive (SP); wild-type (WT).


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Animals , Antibodies, Monoclonal , Atrophy , Bacterial Proteins/genetics , Bacterial Toxins/metabolism , Broadly Neutralizing Antibodies , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Enterotoxins/metabolism
9.
Sci Transl Med ; 14(662): eabj2381, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36103517

ABSTRACT

Drug-resistant Gram-positive bacterial infections are still a substantial burden on the public health system, with two bacteria (Staphylococcus aureus and Streptococcus pneumoniae) accounting for over 1.5 million drug-resistant infections in the United States alone in 2017. In 2019, 250,000 deaths were attributed to these pathogens globally. We have developed a preclinical glycopeptide antibiotic, MCC5145, that has excellent potency (MIC90 ≤ 0.06 µg/ml) against hundreds of isolates of methicillin-resistant S. aureus (MRSA) and other Gram-positive bacteria, with a greater than 1000-fold margin over mammalian cell cytotoxicity values. The antibiotic has therapeutic in vivo efficacy when dosed subcutaneously in multiple murine models of established bacterial infections, including thigh infection with MRSA and blood septicemia with S. pneumoniae, as well as when dosed orally in an antibiotic-induced Clostridioides difficile infection model. MCC5145 exhibited reduced nephrotoxicity at microbiologically active doses in mice compared to vancomycin. MCC5145 also showed improved activity against biofilms compared to vancomycin, both in vitro and in vivo, and a low propensity to select for drug resistance. Characterization of drug action using a transposon library bioinformatic platform showed a mechanistic distinction from other glycopeptide antibiotics.


Subject(s)
Anti-Infective Agents , Gram-Positive Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Biofilms , Glycopeptides/pharmacology , Glycopeptides/therapeutic use , Lipoglycopeptides/therapeutic use , Mammals , Mice , Microbial Sensitivity Tests , Streptococcus pneumoniae , Vancomycin/pharmacology , Vancomycin/therapeutic use
10.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35594341

ABSTRACT

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Subject(s)
Bacterial Toxins , GPI-Linked Proteins , Inflammasomes , Animals , Bacterial Toxins/metabolism , Clostridium septicum/chemistry , GPI-Linked Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Inflammasomes/metabolism , Mammals/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis
11.
Toxins (Basel) ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35202151

ABSTRACT

Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.


Subject(s)
Bacterial Toxins/metabolism , Clostridium sordellii/metabolism , Animals , Bacterial Toxins/genetics , Chlorocebus aethiops , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Clostridium perfringens/genetics , Clostridium perfringens/metabolism , Clostridium sordellii/genetics , Vero Cells
12.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: mdl-34579805

ABSTRACT

Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.


Subject(s)
Bacteria/chemistry , Peptidoglycan/chemistry , Carbohydrate Conformation , Datasets as Topic , Glycomics , Mass Spectrometry/methods , Peptidoglycan/biosynthesis , Reproducibility of Results , Software
13.
Antibiotics (Basel) ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34438963

ABSTRACT

Clostridioides (also known as Clostridium) difficile is a Gram-positive anaerobic, spore producing bacterial pathogen that causes severe gastrointestinal infection in humans. The current chemotherapeutic options are inadequate, expensive, and limited, and thus inexpensive drug treatments for C. difficile infection (CDI) with improved efficacy and specificity are urgently needed. To improve the solubility of our cationic amphiphilic 1,1'-binaphthylpeptidomimetics developed earlier that showed promise in an in vivo murine CDI model we have synthesized related compounds with an N-arytriazole or N-naphthyltriazole moiety instead of the 1,1'-biphenyl or 1,1'-binaphthyl moiety. This modification was made to increase the polarity and thus water solubility of the overall peptidomimetics, while maintaining the aromatic character. The dicationic N-naphthyltriazole derivative 40 was identified as a C. difficile-selective antibacterial with MIC values of 8 µg/mL against C. difficile strains ATCC 700057 and 132 (both ribotype 027). This compound displayed increased water solubility and reduced hemolytic activity (32 µg/mL) in an in vitro hemolysis assay and reduced cytotoxicity (CC50 32 µg/mL against HEK293 cells) relative to lead compound 2. Compound 40 exhibited mild efficacy (with 80% survival observed after 24 h compared to the DMSO control of 40%) in an in vivo murine model of C. difficile infection by reducing the severity and slowing the onset of disease.

14.
Metabolites ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208228

ABSTRACT

Cryptosporidiosis is a major human health concern globally. Despite well-established methods, misdiagnosis remains common. Our understanding of the cryptosporidiosis biochemical mechanism remains limited, compounding the difficulty of clinical diagnosis. Here, we used a systems biology approach to investigate the underlying biochemical interactions in C57BL/6J mice infected with Cryptosporidium parvum. Faecal samples were collected daily following infection. Blood, liver tissues and luminal contents were collected 10 days post infection. High-resolution liquid chromatography and low-resolution gas chromatography coupled with mass spectrometry were used to analyse the proteomes and metabolomes of these samples. Faeces and luminal contents were additionally subjected to 16S rRNA gene sequencing. Univariate and multivariate statistical analysis of the acquired data illustrated altered host and microbial energy pathways during infection. Glycolysis/citrate cycle metabolites were depleted, while short-chain fatty acids and D-amino acids accumulated. An increased abundance of bacteria associated with a stressed gut environment was seen. Host proteins involved in energy pathways and Lactobacillus glyceraldehyde-3-phosphate dehydrogenase were upregulated during cryptosporidiosis. Liver oxalate also increased during infection. Microbiome-parasite relationships were observed to be more influential than the host-parasite association in mediating major biochemical changes in the mouse gut during cryptosporidiosis. Defining this parasite-microbiome interaction is the first step towards building a comprehensive cryptosporidiosis model towards biomarker discovery, and rapid and accurate diagnostics.

15.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741626

ABSTRACT

Disease control in animal production systems requires constant vigilance. Historically, the application of in-feed antibiotics to control bacteria and improve performance has been a much-used approach to maintain animal health and welfare. However, the widespread use of in-feed antibiotics is thought to increase the risk of antibiotic resistance developing. Alternative methods to control disease and maintain productivity need to be developed. Live vaccination is useful in preventing colonization of mucosa-dwelling pathogens by inducing a mucosal immune response. Native poultry isolate Ligilactobacillus agilis La3 (previously Lactobacillus agilis) has been identified as a candidate for use as a live vector to deliver therapeutic proteins such as bacteriocins, phage endolysins, or vaccine antigens to the gastrointestinal tract of chickens. In this study, the complete genome sequence of L. agilis La3 was determined and transcriptome analysis was undertaken to identify highly expressed genes. Predicted promoter regions and ribosomal binding sites from constitutively expressed genes were used to construct recombinant protein expression cassettes. A series of double-crossover shuttle plasmids were constructed to facilitate rapid selectable integration of expression cassettes into the Lagilis La3 chromosome via homologous recombination. Inserts showed 100% stable integration over 100 generations without selection. A positive relationship was found between protein expression levels and the predicted strength of the promoters. Using this system, stable chromosomal expression of a Clostridium perfringens antigen, rNetB, was demonstrated without selection. Finally, two recombinant strains, Lagilis La3::P eft -rnetB and Lagilis La3::P cwah -rnetB, were constructed and characterized, and they showed potential for future application as live vaccines in chickens.IMPORTANCE Therapeutic proteins such as antigens can be used to prevent infectious diseases in poultry. However, traditional vaccine delivery by intramuscular or subcutaneous injection generally has not proven effective for mucosa-dwelling microorganisms that live within the gastrointestinal tract. Utilizing live bacteria to deliver vaccine antigens directly to the gut immune system can overcome some of the limitations of conventional vaccination. In this work, Ligilactobacillus agilis La3, an especially effective gut colonizer, has been analyzed and engineered with modular and stable expression systems to produce recombinant proteins. To demonstrate the effectiveness of the system, expression of a vaccine antigen from poultry pathogen Clostridium perfringens was monitored over 100 generations without selection and found to be completely stable. This study demonstrates the development of genetic tools and novel constitutive expression systems and further development of L. agilis La3 as a live delivery vehicle for recombinant proteins.


Subject(s)
Bacterial Proteins/genetics , Bacterial Vaccines/immunology , Gene Expression/immunology , Genome, Bacterial , Lactobacillus/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Clostridium perfringens/physiology , Lactobacillus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Attenuated/immunology
16.
Commun Biol ; 4(1): 7, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469147

ABSTRACT

Antimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol's primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the 'urgent threat' pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cannabidiol/analogs & derivatives , Cannabidiol/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cannabidiol/chemistry , Cannabidiol/toxicity , Clostridioides difficile/drug effects , Drug Resistance, Bacterial/drug effects , Female , HEK293 Cells , Hemolysis/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred Strains , Microbial Sensitivity Tests , Neisseria gonorrhoeae/drug effects , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Structure-Activity Relationship
17.
Plasmid ; 113: 102516, 2021 01.
Article in English | MEDLINE | ID: mdl-32526229

ABSTRACT

The spore-forming, anaerobic Gram positive pathogen Clostridium perfringens encodes many of its disease-causing toxins on closely related conjugative plasmids. Studies of the tetracycline resistance plasmid pCW3 have identified many of the genes involved in conjugative transfer, which are located in the tcp conjugation locus. Upstream of this locus is an uncharacterised region (the cnaC region) that is highly conserved. This study examined the importance in pCW3 conjugation of several highly conserved proteins encoded in the cnaC region. Conjugative mating studies suggested that the SrtD, TcpN and Dam proteins were required for efficient pCW3 transfer between C. perfringens cells from the same strain background. The requirement of these proteins for conjugation was amplified in matings between C. perfringens cells of different strain backgrounds. Additionally, the putative collagen adhesin protein, CnaC, was only required for the optimal transfer of pCW3 between cells of different strain backgrounds. Based on these studies we postulate that CnaC, SrtD, TcpN and Dam are involved in enhancing the transfer frequency of pCW3. These studies have led to a significant expansion of the tcp conjugation locus, which now encompasses a 19 kb region.


Subject(s)
Clostridium perfringens , Conjugation, Genetic , Clostridium perfringens/genetics , Plasmids/genetics , Tetracycline Resistance
18.
Dev Cell ; 56(1): 36-51.e5, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33383000

ABSTRACT

Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Chromosome Segregation , Chromosomes/metabolism , Peptidoglycan/metabolism , Spores, Bacterial/growth & development , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Wall/enzymology , Chromosomes/genetics , Microscopy, Electron, Transmission , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Peptidoglycan/biosynthesis , Peptidoglycan/genetics , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Protein Binding , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure
19.
PLoS Genet ; 16(12): e1009246, 2020 12.
Article in English | MEDLINE | ID: mdl-33315869

ABSTRACT

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


Subject(s)
Bacterial Proteins/metabolism , Spores, Bacterial/metabolism , Bacillus subtilis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Wall/metabolism , Mutation , Protein Domains , Spores, Bacterial/ultrastructure
20.
Gastroenterology ; 159(4): 1431-1443.e6, 2020 10.
Article in English | MEDLINE | ID: mdl-32574621

ABSTRACT

BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.


Subject(s)
Clostridioides difficile/drug effects , Enterocolitis, Pseudomembranous/etiology , Enterocolitis, Pseudomembranous/pathology , Plasminogen/pharmacology , Spores, Bacterial/drug effects , Animals , Disease Models, Animal , Humans , Intestine, Small , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...