Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cells ; 12(17)2023 08 25.
Article in English | MEDLINE | ID: mdl-37681876

ABSTRACT

Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-ß-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1ß and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1ß and TNFα inflammatory responses in human microglia.


Subject(s)
ATP-Binding Cassette Transporters , Hematologic Diseases , Microglia , Humans , Astrocytes , ATP-Binding Cassette Transporters/genetics , Down-Regulation , THP-1 Cells , Tumor Necrosis Factor-alpha/pharmacology
2.
Alzheimers Res Ther ; 14(1): 194, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572909

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) shares risk factors with cardiovascular disease (CVD) and dysregulated cholesterol metabolism is a mechanism common to both diseases. Cholesterol efflux capacity (CEC) is an ex vivo metric of plasma high-density lipoprotein (HDL) function and inversely predicts incident CVD independently of other risk factors. Cholesterol pools in the central nervous system (CNS) are largely separate from those in blood, and CNS cholesterol excess may promote neurodegeneration. CEC of cerebrospinal fluid (CSF) may be a useful measure of CNS cholesterol trafficking. We hypothesized that subjects with AD and mild cognitive impairment (MCI) would have reduced CSF CEC compared with Cognitively Normal (CN) and that CSF apolipoproteins apoA-I, apoJ, and apoE might have associations with CSF CEC. METHODS: We retrieved CSF and same-day ethylenediaminetetraacetic acid (EDTA) plasma from 108 subjects (40 AD; 18 MCI; and 50 CN) from the Center for Neurodegenerative Disease Research biobank at the Perelman School of Medicine, University of Pennsylvania. For CSF CEC assays, we used N9 mouse microglial cells and SH-SY5Y human neuroblastoma cells, and the corresponding plasma assay used J774 cells. Cells were labeled with [3H]-cholesterol for 24 h, had ABCA1 expression upregulated for 6 h, were exposed to 33 µl of CSF, and then were incubated for 2.5 h. CEC was quantified as percent [3H]-cholesterol counts in medium of total counts medium+cells, normalized to a pool sample. ApoA-I, ApoJ, ApoE, and cholesterol were also measured in CSF. RESULTS: We found that CSF CEC was significantly lower in MCI compared with controls and was poorly correlated with plasma CEC. CSF levels of ApoJ/Clusterin were also significantly lower in MCI and were significantly associated with CSF CEC. While CSF ApoA-I was also associated with CSF CEC, CSF ApoE had no association with CSF CEC. CSF CEC is significantly and positively associated with CSF Aß. Taken together, ApoJ/Clusterin may be an important determinant of CSF CEC, which in turn could mitigate risk of MCI and AD risk by promoting cellular efflux of cholesterol or other lipids. In contrast, CSF ApoE does not appear to play a role in determining CSF CEC.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Neuroblastoma , Neurodegenerative Diseases , Humans , Mice , Animals , Clusterin , Alzheimer Disease/cerebrospinal fluid , Apolipoprotein A-I , Apolipoproteins E/cerebrospinal fluid , Cholesterol
4.
Article in English | MEDLINE | ID: mdl-35381375

ABSTRACT

Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3-5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.


Subject(s)
ATP-Binding Cassette Transporters , Apolipoprotein A-I , ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Choline , Lipoproteins, HDL/metabolism , Phosphatidylcholines/metabolism , Phosphatidylinositols , Phospholipids/metabolism , Serine
5.
Alzheimers Dement ; 17(2): 164-174, 2021 02.
Article in English | MEDLINE | ID: mdl-33336544

ABSTRACT

We propose the altered lipidostasis hypothesis of Alzheimer's disease (AD). It holds that vulnerable neurons of the entorhinal region generate a neurodegenerative lipid during normal function, adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) protects from AD pathogenesis by removing it out of the cell, generation of the lipid increases with age, and the minimal amount of ABCA7 needed to dispose of the rising volumes of the lipid also increases with age. A survey of ABCA7 protein levels in the hippocampus or parietal cortex of 123 individuals with or without AD neuropathology showed that individuals with low ABCA7 developed AD neuropathology at a younger age, those with intermediate ABCA7 developed it later, and individuals who developed it very late had high ABCA7, the same as the youngest controls. ABC transporters closely similar to ABCA7 protect cells by removing toxic lipids. ABCA7 may have analogous functions. The hypothesis predicts lipidosis and membrane protein dysfunction in neurons with low ABCA7. Further work will identify the neurodegenerative lipid and determine approaches to exploit ABCA7 for therapeutic purposes.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Alzheimer Disease/metabolism , Lipid Metabolism , Age Factors , Aged , Aged, 80 and over , Female , Hippocampus/metabolism , Humans , Male , Middle Aged , Parietal Lobe/metabolism
6.
J Alzheimers Dis ; 74(2): 563-578, 2020.
Article in English | MEDLINE | ID: mdl-32065798

ABSTRACT

BACKGROUND: Basic research has implicated intracellular cholesterol in neurons, microglia, and astrocytes in the pathogenesis of Alzheimer's disease (AD), but there is presently no assay to access intracellular cholesterol in neural cells in living people in the context of AD. OBJECTIVE: To devise and characterize an assay that can access intracellular cholesterol and cholesterol efflux in neural cells in living subjects. METHODS: We modified the protocol for high-density lipoprotein cholesterol efflux capacity (CEC) from macrophages, a biomarker that accesses cholesterol in macrophages in atherosclerosis. To measure cerebrospinal fluid (CSF) CECs from neurons, microglia, and astrocytes, CSF was exposed to, correspondingly, neuronal, microglial, and astrocytic cholesterol source cells. Human neuroblastoma SH-SY5Y, mouse microglial N9, and human astroglial A172 cells were used as the cholesterol source cells. CSF samples were screened for contamination with blood. CSF CECs were measured in a small cohort of 22 individuals. RESULTS: CSF CECs from neurons, microglia, and astrocytes were moderately to moderately strongly correlated with CSF concentrations of cholesterol, apolipoprotein A-I, apolipoprotein E, and clusterin (Pearson's r = 0.53-0.86), were in poor agreement with one another regarding CEC of the CSF samples (Lin's concordance coefficient rc = 0.71-0.76), and were best predicted by models consisting of, correspondingly, CSF phospholipid (R2 = 0.87, p < 0.0001), CSF apolipoprotein A-I and clusterin (R2 = 0.90, p < 0.0001), and CSF clusterin (R2 = 0.62, p = 0.0005). CONCLUSION: Characteristics of the CSF CEC metrics suggest a potential for independent association with AD and provision of fresh insight into the role of cholesterol in AD pathogenesis.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/epidemiology , Astrocytes/metabolism , Cholesterol/cerebrospinal fluid , Microglia/metabolism , Neurons/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Cell Line, Tumor , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests
7.
Mol Ther ; 27(1): 188-199, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30449662

ABSTRACT

Elevated low-density lipoprotein cholesterol (LDL-C) is one of the major contributors to cardiovascular heart disease (CHD), the leading cause of death worldwide. Due to severe side effects of statins, alternative treatment strategies are required for statin-intolerant patients. Monoclonal antibodies (mAbs) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown great efficacy in LDL-C reduction. Limitations for this approach include the need for multiple injections as well as increased costs associated with patient management. Here, we engineered a DNA-encoded mAb (DMAb) targeting PCSK9 (daPCSK9), as an alternative approach to protein-based lipid-lowering therapeutics, and we characterized its expression and activity. A single intramuscular administration of mouse daPCSK9 generated expression in vivo for over 42 days that corresponded with a substantial decrease of 28.6% in non-high-density lipoprotein cholesterol (non-HDL-C) and 10.3% in total cholesterol by day 7 in wild-type mice. Repeated administrations of the DMAb plasmid led to increasing expression, with DMAb levels of 7.5 µg/mL at day 62. daPCSK9 therapeutics may provide a novel, simple, less frequent, cost-effective approach to reducing LDL-C, either as a stand-alone therapy or in combination with other LDL-lowering therapeutics for synergistic effect.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Proprotein Convertase 9/immunology , Animals , Cardiovascular Diseases/blood , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/therapy , Cholesterol, LDL/blood , Genetic Therapy/methods , HEK293 Cells , Humans , Mice , Plasmids/genetics
8.
J Lipid Res ; 59(10): 1927-1939, 2018 10.
Article in English | MEDLINE | ID: mdl-30076206

ABSTRACT

Cholesterol-containing soft drusen and subretinal drusenoid deposits (SDDs) occur at the basolateral and apical side of the retinal pigment epithelium (RPE), respectively, in the chorioretina and are independent risk factors for late age-related macular degeneration (AMD). Cholesterol in these deposits could originate from the RPE as nascent HDL or apoB-lipoprotein. We characterized cholesterol efflux and apoB-lipoprotein secretion in RPE cells. Human RPE cells, ARPE-19, formed nascent HDL that was similar in physicochemical properties to nascent HDL formed by other cell types. In highly polarized primary human fetal RPE (phfRPE) monolayers grown in low-lipid conditions, cholesterol efflux to HDL was moderately directional to the apical side and much stronger than ABCA1-mediated efflux to apoA-I at both sides; ABCA1-mediated efflux was weak and equivalent between the two sides. Feeding phfRPE monolayers with oxidized or acetylated LDL increased intracellular levels of free and esterified cholesterol and substantially raised ABCA1-mediated cholesterol efflux at the apical side. phfRPE monolayers secreted apoB-lipoprotein preferentially to the apical side in low-lipid and oxidized LDL-feeding conditions. These findings together with evidence from human genetics and AMD pathology suggest that RPE-generated HDL may contribute lipid to SDDs.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoproteins B/metabolism , Cholesterol/metabolism , Retinal Pigment Epithelium/metabolism , Biological Transport , Humans , Lipoproteins, LDL/metabolism
9.
EBioMedicine ; 18: 139-145, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28330813

ABSTRACT

Despite the recognized role of the ATP-binding Cassette Transporter A1 (ABCA1) in high-density lipoprotein (HDL) metabolism, our understanding of ABCA1 deficiency in human hepatocytes is limited. To define the functional effects of human hepatocyte ABCA1 deficiency, we generated induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) from Tangier disease (TD) and matched control subjects. Control HLCs exhibited robust cholesterol efflux to apolipoprotein A-I (apoA-I) and formed nascent HDL particles. ABCA1-deficient HLCs failed to mediate lipid efflux or nascent HDL formation, but had elevated triglyceride (TG) secretion. Global transcriptome analysis revealed significantly increased ANGPTL3 expression in ABCA1-deficient HLCs. Angiopoietin-related protein 3 (ANGPTL3) was enriched in plasma of TD relative to control subjects. These results highlight the required role of ABCA1 in cholesterol efflux and nascent HDL formation by hepatocytes. Furthermore, our results suggest that hepatic ABCA1 deficiency results in increased hepatic TG and ANGPTL3 secretion, potentially underlying the elevated plasma TG levels in TD patients.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Lipoproteins, HDL/metabolism , ATP Binding Cassette Transporter 1/genetics , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/blood , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Apolipoprotein A-I/metabolism , Cell Differentiation , Cells, Cultured , Cholesterol/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Tangier Disease/metabolism , Tangier Disease/pathology , Transcriptome , Triglycerides/metabolism
10.
J Lipid Res ; 58(4): 731-741, 2017 04.
Article in English | MEDLINE | ID: mdl-28137768

ABSTRACT

Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preß HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT.


Subject(s)
Cholesterol, HDL/blood , Cholesterol/blood , Lipoproteins, HDL/blood , Phospholipid Transfer Proteins/genetics , Animals , Biological Transport/genetics , Dependovirus/genetics , Gene Expression Regulation , High-Density Lipoproteins, Pre-beta/biosynthesis , High-Density Lipoproteins, Pre-beta/blood , High-Density Lipoproteins, Pre-beta/genetics , Humans , Lipoproteins, HDL/genetics , Liver/metabolism , Macrophages/metabolism , Mice , Phospholipid Transfer Proteins/biosynthesis , Sequence Deletion
11.
Biochim Biophys Acta ; 1861(12 Pt A): 1968-1979, 2016 12.
Article in English | MEDLINE | ID: mdl-27671775

ABSTRACT

ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.


Subject(s)
Androstenes/pharmacology , Bridged-Ring Compounds/pharmacology , Lipid Metabolism/drug effects , Lipoproteins, HDL/metabolism , Monensin/pharmacology , Palmitates/pharmacology , Probucol/pharmacology , Thiones/pharmacology , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoprotein A-I/metabolism , Cell Line , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholesterol/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Macrophages/metabolism , Mice , Norbornanes , Particle Size , Phospholipids/metabolism , RAW 264.7 Cells , Thiocarbamates
12.
J Lipid Res ; 56(5): 972-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25652088

ABSTRACT

The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.


Subject(s)
Apolipoprotein A-I/pharmacology , Cardiotonic Agents/pharmacology , Cholesterol/metabolism , Nanoparticles/metabolism , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoprotein A-I/metabolism , Biological Transport , Cell Line , Coronary Artery Disease/drug therapy , Cricetinae , Drug Evaluation, Preclinical , Drug Stability , Gold/metabolism , Lipoproteins/metabolism , Macrophages/metabolism , Molecular Mimicry , Phospholipids/pharmacology , Scavenger Receptors, Class B/metabolism
13.
J Biol Chem ; 288(32): 23150-60, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23836906

ABSTRACT

Apolipoprotein (apo) A-I-containing nascent HDL particles produced by the ATP binding cassette transporter A1 have different sizes and compositions. To understand the molecular basis for this heterogeneity, the HDL particles produced by apoA-I-mediated solubilization of phospholipid (PL)/free (unesterified) cholesterol (FC) bilayer membranes in cell and cell-free systems are compared. Incubation of apoA-I with ATP binding cassette transporter A1-expressing baby hamster kidney cells leads to formation of two populations of FC-containing discoidal nascent HDL particles. The larger 11-nm diameter particles are highly FC-enriched (FC/PL = 1.2/1 mol/mol) relative to the smaller 8 nm particles and the cell plasma membrane (FC/PL = 0.4/1). ApoA-I-mediated spontaneous solubilization of either multilamellar or unilamellar vesicles made of a membrane-PL mixture and FC yields discoidal HDL particles with diameters in the range 9-17 nm and, as found with the cell system, the larger particles are relatively enriched in FC despite the fact that all particles are created by solubilization of a common FC/PL membrane domain. The size-dependent distribution of FC among HDL particles is due to varying amounts of PL being sequestered in a boundary layer by interaction with apoA-I at the disc edge. The presence of a relatively large boundary layer in smaller discoidal HDL promotes preferential distribution of phosphatidylserine to such particles. However, phosphatidylcholine and sphingomyelin which are the primary PL constituents of nascent HDL do not exhibit selective incorporation into HDL discs of different sizes. This understanding of the mechanisms responsible for the heterogeneity in lipid composition of nascent HDL particles may provide a basis for selecting subspecies with preferred cardio-protective properties.


Subject(s)
Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Phospholipids/metabolism , Sphingomyelins/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Animals , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Cell Line , Cricetinae , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/genetics , Phospholipids/chemistry , Phospholipids/genetics , Solubility , Sphingomyelins/chemistry , Sphingomyelins/genetics
14.
FASEB J ; 27(7): 2880-92, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23543682

ABSTRACT

Nascent high-density lipoprotein (HDL) particles arise in different sizes. We have sought to uncover factors that control this size heterogeneity. Gel filtration, native PAGE, and protein cross-linking were used to analyze the size heterogeneity of nascent HDL produced by BHK-ABCA1, RAW 264.7, J774, and HepG2 cells under different levels of two factors considered as a ratio, the availability of apolipoprotein AI (apoAI) -accessible cell lipid, and concentration of extracellular lipid-free apoAI. Increases in the available cell lipid:apoAI ratio due to either elevated ATP-binding cassette transporter A1 (ABCA1) expression and activity or raised cell density (i.e., increasing numerator) shifted the production of nascent HDL from smaller particles with fewer apoAI molecules per particle and fewer molecules of choline-phospholipid and cholesterol per apoAI molecule to larger particles that contained more apoAI and more lipid per molecule of apoAI. A further shift to larger particles was observed in BHK-ABCA1 cells when the available cell lipid:apoAI ratio was raised still higher by decreasing the apoAI concentration (i.e., the denominator). These changes in nascent HDL biogenesis were reminiscent of the transition that occurs in the size composition of reconstituted HDL in response to an increasing initial lipid:apoAI molar ratio. Thus, the ratio of available cell lipid:apoAI is a fundamental cause of nascent HDL size heterogeneity, and rHDL formation is a good model of nascent HDL biogenesis.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/metabolism , Lipids/analysis , Lipoproteins, HDL/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , Animals , Apolipoprotein A-I/chemistry , Cell Count , Cell Line , Cholesterol/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Hep G2 Cells , Humans , Kinetics , Lipid Metabolism/drug effects , Lipids/chemistry , Lipoproteins, HDL/chemistry , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mifepristone/pharmacology , Mutation , Particle Size
15.
Biochim Biophys Acta ; 1821(3): 456-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21840419

ABSTRACT

The apoA-I molecule adopts a two-domain tertiary structure and the properties of these domains modulate the ability to form HDL particles. Thus, human apoA-I differs from mouse apoA-I in that it can form smaller HDL particles; the C-terminal α-helix is important in this process and human apoA-I is unusual in containing aromatic amino acids in the non-polar face of this amphipathic α-helix. To understand the influence of these aromatic amino acids and the associated high hydrophobicity, apoA-I variants were engineered in which aliphatic amino acids were substituted with or without causing a decrease in overall hydrophobicity. The variants human apoA-I (F225L/F229A/Y236A) and apoA-I (F225L/F229L/A232L/Y236L) were compared to wild-type (WT) apoA-I for their abilities to (1) solubilize phospholipid vesicles and form HDL particles of different sizes, and (2) mediate cellular cholesterol efflux and create nascent HDL particles via ABCA1. The loss of aromatic residues and concomitant decrease in hydrophobicity in apoA-I (F225L/F229A/Y236A) has no effect on protein stability, but reduces by a factor of about three the catalytic efficiencies (V(max)/K(m)) of vesicle solubilization and cholesterol efflux; also, relatively large HDL particles are formed. With apoA-I (F225L/F229L/A232L/Y236L) where the hydrophobicity is restored by the presence of only leucine residues in the helix non-polar face, the catalytic efficiencies of vesicle solubilization and cholesterol efflux are similar to those of WT apoA-I; this variant forms smaller HDL particles. Overall, the results show that the hydrophobicity of the non-polar face of the C-terminal amphipathic α-helix plays a critical role in determining apoA-I functionality but aromatic amino acids are not required. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Subject(s)
Amino Acids, Aromatic/chemistry , Apolipoprotein A-I/chemistry , Lipoproteins, HDL/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/metabolism , Amino Acid Substitution , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Cells, Cultured , Cholesterol/metabolism , Cricetinae , Humans , Hydrophobic and Hydrophilic Interactions , Mutagenesis, Site-Directed , Protein Denaturation , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Transition Temperature
16.
Arterioscler Thromb Vasc Biol ; 31(11): 2700-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21836073

ABSTRACT

OBJECTIVE: Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. METHODS AND RESULTS: Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that 2 compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5ß-cholan-24-oate), the more active of the 2, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. CONCLUSION: The inhibitory effects of compound 1 support a 3-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Macrophages/drug effects , Macrophages/metabolism , Phospholipid Transfer Proteins/pharmacology , ATP Binding Cassette Transporter 1 , Animals , Cell Line , Cholates/pharmacology , Ethylenediamines/pharmacology , Lipoproteins, HDL/antagonists & inhibitors , Liposomes/metabolism , Macrophages/pathology , Mice , Models, Animal , Protein Binding , Transferrin/metabolism
17.
BMC Dev Biol ; 8: 96, 2008 Oct 02.
Article in English | MEDLINE | ID: mdl-18831765

ABSTRACT

BACKGROUND: P-type ATPases in subfamily IV are exclusively eukaryotic transmembrane proteins that have been proposed to directly translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from the exofacial to the cytofacial monolayer of the plasma membrane. Eukaryotic genomes contain many genes encoding members of this subfamily. At present it is unclear why there are so many genes of this kind per organism or what individual roles these genes perform in organism development. RESULTS: We have systematically investigated expression and developmental function of the six, tat-1 through 6, subfamily IV P-type ATPase genes encoded in the Caenorhabditis elegans genome. tat-5 is the only ubiquitously-expressed essential gene in the group. tat-6 is a poorly-transcribed recent duplicate of tat-5. tat-2 through 4 exhibit tissue-specific developmentally-regulated expression patterns. Strong expression of both tat-2 and tat-4 occurs in the intestine and certain other cells of the alimentary system. The two are also expressed in the uterus, during spermatogenesis and in the fully-formed spermatheca. tat-2 alone is expressed in the pharyngeal gland cells, the excretory system and a few cells of the developing vulva. The expression pattern of tat-3 is almost completely different from those of tat-2 and tat-4. tat-3 expression is detectable in the steroidogenic tissues: the hypodermis and the XXX cells, as well as in most cells of the pharynx (except gland), various tissues of the reproductive system (except uterus and spermatheca) and seam cells. Deletion of tat-1 through 4 individually interferes little or not at all with the regular progression of organism growth and development under normal conditions. However, tat-2 through 4 become essential for reproductive growth during sterol starvation. CONCLUSION: tat-5 likely encodes a housekeeping protein that performs the proposed aminophospholipid translocase function routinely. Although individually dispensable, tat-1 through 4 seem to be at most only partly redundant. Expression patterns and the sterol deprivation hypersensitivity deletion phenotype of tat-2 through 4 suggest that these genes carry out subtle metabolic functions, such as fine-tuning sterol metabolism in digestive or steroidogenic tissues. These findings uncover an unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the genes encoding the putative aminophospholipid translocases.


Subject(s)
Caenorhabditis elegans/genetics , Evolution, Molecular , Metabolic Networks and Pathways/genetics , Phospholipid Transfer Proteins/genetics , Sterols/metabolism , Adenosine Triphosphatases/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Embryo, Nonmammalian , Female , Gene Expression Regulation, Developmental , Male , Multigene Family , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/physiology , Phylogeny , Substrate Specificity/genetics , Tissue Distribution
18.
Biotechniques ; 43(5): 596, 598, 560, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18072588

ABSTRACT

Targeting a gene expression reporter, usually the green fluorescent protein (GFP), to the nucleus via a translationally fused nuclear localization signal (NLS) greatly facilitates recognition and identification of the reporter-expressing cells in Caenorhabditis elegans. Presently circulating nematode transcriptional gene expression vectors use the viral NLS from simian virus 40 (SV40) large T antigen. This NLS, however fails to ensure sufficient localization of the GFP peptide to the nucleus. We modified the common transcriptional reporter SV40 NLS-GFP by adding to its C terminus a cognate putative NLS from the transcription factor egl-13. The EGL-13 NLS effected clear contrast in fluorescence intensity between the nucleus and the cytoplasm in cells with strong reporter signal and efficiently highlighted the nucleus in tissues with weak reporter expression in a wide range of tested tissues. The SV40 NLS-GFP-EGL-13 NLS vector should become a valuable tool for gene expression studies in C. elegans.


Subject(s)
Caenorhabditis elegans/genetics , Cell Nucleus/metabolism , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/metabolism , Nuclear Localization Signals/metabolism , Animals , Protein Transport
19.
Curr Biol ; 17(11): 994-9, 2007 Jun 05.
Article in English | MEDLINE | ID: mdl-17540571

ABSTRACT

Phospholipids are distributed asymmetrically across the plasma-membrane bilayer of eukaryotic cells: Phosphatidylserine (PS), phosphatidylethanolamine, and phosphoinositides are predominantly restricted to the inner leaflet, whereas phophatidylcholine and sphingolipids are enriched on the outer leaflet [1, 2]. Exposure of PS on the cell surface is a conserved feature of apoptosis and plays an important role in promoting the clearance of apoptotic cells by phagocytosis [3]. However, the molecular mechanism that drives PS exposure remains mysterious. To address this issue, we studied cell-surface changes during apoptosis in the nematode C. elegans. Here, we show that PS exposure can readily be detected on apoptotic C. elegans cells. We generated a transgenic strain expressing a GFP::Annexin V reporter to screen for genes required for this process. Although none of the known engulfment genes was required, RNAi knockdown of the putative aminophospholipid transporter gene tat-1 abrogated PS exposure on apoptotic cells. tat-1(RNAi) also reduced the efficiency of cell-corpse clearance, suggesting that PS exposure acts as an "eat-me" signal in worms. We propose that tat-1 homologs might also play an important role in PS exposure in mammals.


Subject(s)
Apoptosis/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/cytology , Cell Membrane/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/physiology , Animals , Biomarkers , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/metabolism , Cells, Cultured , Embryonic Development/genetics , Germ Cells/metabolism , Green Fluorescent Proteins/analysis , Organisms, Genetically Modified/metabolism , Phospholipid Transfer Proteins/antagonists & inhibitors , Phospholipid Transfer Proteins/metabolism , RNA Interference
20.
Proc Natl Acad Sci U S A ; 101(17): 6798-802, 2004 Apr 27.
Article in English | MEDLINE | ID: mdl-15084749

ABSTRACT

Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1(L105A), showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Cell Nucleus/metabolism , Light , Signal Transduction/physiology , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Dimerization , Energy Transfer , Genetic Complementation Test , Luminescent Measurements , Molecular Sequence Data , Sequence Homology, Amino Acid , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...