Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 73, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072494

ABSTRACT

The experimental realization of p-orbital systems is desirable because p-orbital lattices have been proposed theoretically to host strongly correlated electrons that exhibit exotic quantum phases. Here, we synthesize a two-dimensional Fe-coordinated bimolecular metal-organic framework which constitutes a honeycomb lattice of 1,4,5,8,9,12-hexaazatriphenylene molecules and a Kagome lattice of 5,15-di(4-pyridyl)-10,20-diphenylporphyrin molecules on a Au(111) substrate. Density-functional theory calculations show that the framework features multiple well-separated spin-polarized Kagome bands, namely Dirac cone bands and Chern flat bands, near the Fermi level. Using tight-binding modelling, we reveal that these bands are originated from two effects: the low-lying molecular orbitals that exhibit p-orbital characteristics and the honeycomb-Kagome lattice. This study demonstrates that p-orbital Kagome bands can be realized in metal-organic frameworks by using molecules with molecular orbitals of p-orbital like symmetry.

2.
Angew Chem Int Ed Engl ; 61(27): e202204528, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35466508

ABSTRACT

1,4,5,8,9,12-Hexaazatriphenylene (HAT) is one of the smallest polyheterocyclic aromatic building blocks for forming conjugated metal-organic frameworks (cMOFs). However, the strong inter-molecular steric hindrance impedes the growth of HAT-based cMOFs. Here we employ on-surface synthesis to grow single-layer two-dimensional cMOFs of M3 (HAT)2 (M=Ni, Fe, Co). Using scanning tunnelling microscopy and density-functional theory (DFT) analysis, we resolve that the frameworks comprise a hexagonal lattice of HAT molecules and a Kagome lattice of metal atoms. The DFT analysis indicates that Ni, Co and Fe carry a magnetic moment of 1.1, 2.5, and 3.7 µB, respectively. We anticipate that the small π-conjugated core of HAT and strong bidentate chelating coordination give rise to appealing electronic and magnetic properties.

3.
Commun Chem ; 5(1): 174, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36697742

ABSTRACT

Creating conjugated macrocycles has attracted extensive research interest because their unique chemical and physical properties, such as conformational flexibility, intrinsic inner cavities and aromaticity/antiaromaticity, make these systems appealing building blocks for functional supramolecular materials. Here, we report the synthesis of four-, six- and eight-membered tetraphenylethylene (TPE)-based macrocycles on Ag(111) via on-surface Ullmann coupling reactions. The as-synthesized macrocycles are spontaneously segregated on the surface and self-assemble as large-area two-dimensional mono-component supramolecular crystals, as characterized by scanning tunneling microscopy (STM). We propose that the synthesis benefits from the conformational flexibility of the TPE backbone in distinctive multi-step reaction pathways. This study opens up opportunities for exploring the photophysical properties of TPE-based macrocycles.

4.
J Phys Chem Lett ; 9(21): 6238-6248, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30240225

ABSTRACT

Novel functionalized graphene oxide π-π stacking with conjugated polymers (P-GO) is fabricated via a simple ethanol-mediated mixing method, leading to better dispersion in organic nonpolar solvents and bypassing the inherent restrictions of hydrophilicity and oleophobicity. We analyze the mechanism of the incorporation of P-GO into inverted organic solar cells (OSCs) based on a poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4- b]thiophenediyl]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) system to investigate the possibility of high-performance thick-film OSC fabrication. It is verified that the incorporation of P-GO into the PTB7:PC71BM blend films leads to a decreased π-π stacking distance, enlarged coherence length for polymer, and optimized phase separation, resulting in more effective charge dissociation, reduced bimolecular recombination, and more balanced charge transport. The OSCs with 1% P-GO incorporation demonstrate a thickness-insensitive fill factor (57.8%) and power conversion efficiency (PCE) (7.31%) even with 250 nm thick photoactive layers, leading to a dramatic PCE enhancement of 34% compared with the control devices with the same thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...