Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Cell Biol ; 43(2): 61-73, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153369

ABSTRACT

Vitiligo is one of the common chronic autoimmune skin diseases in clinic, which is characterized by localized or generalized depigmentation and seriously affects the physical and mental health of patients. At present, the pathogenesis of vitiligo is not clear; mainly, heredity, autoimmunity, oxidative stress, melanocyte (MC) self-destruction, and the destruction, death, or dysfunction of MCs caused by various reasons are always the core of vitiligo. Regulatory cell death (RCD) is an active and orderly death mode of cells regulated by genes, which widely exists in various life activities, plays a pivotal role in maintaining the homeostasis of the organism, and is closely related to the occurrence and development of many diseases. With the deepening of the research and understanding of RCD, people gradually found that there are many different forms of RCD in the lesions and perilesional skin of vitiligo patients, such as apoptosis, autophagy, pyroptosis, ferroptosis, and so on. Different cell death modes have different mechanisms in vitiligo, and different RCDs can interact and regulate each other. In this article, the mechanism related to RCD in the pathogenesis of vitiligo is reviewed, which provides new ideas for exploring the pathogenesis and targeted treatment of vitiligo.


Subject(s)
Vitiligo , Humans , Vitiligo/genetics , Vitiligo/pathology , Melanocytes , Skin , Autoimmunity , Apoptosis
2.
Mol Divers ; 25(4): 2351-2365, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32676746

ABSTRACT

A poor prognosis, relapse and resistance are burning issues during adverse-risk acute myeloid leukaemia (AML) treatment. As a natural medicine, Scutellaria barbata D. Don (SBD) has shown impressive antitumour activity in various cancers. Thus, SBD may become a potential drug in adverse-risk AML treatment. This study aimed to screen the key targets of SBD in adverse-risk AML using the drug-biomarker interaction model through bioinformatics and network pharmacology methods. First, the adverse-risk AML-related critical biomarkers and targets of SBD active ingredient were obtained from The Cancer Genome Atlas database and several pharmacophore matching databases. Next, the protein-protein interaction network was constructed, and topological analysis and pathway enrichment were used to screen key targets and main pathways of intervention of SBD in adverse-risk AML. Finally, molecular docking was implemented for key target verification. The results suggest that luteolin and quercetin are the main active components of SBD against adverse-risk AML, and affected drug resistance, apoptosis, immune regulation and angiogenesis through the core targets AKT1, MAPK1, IL6, EGFR, SRC, VEGFA and TP53. We hope the proposed drug-biomarker interaction model provides an effective strategy for the research and development of antitumour drugs.


Subject(s)
Scutellaria
SELECTION OF CITATIONS
SEARCH DETAIL
...