Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667179

ABSTRACT

Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic method to fabricate nano-doped hollow fiber, which not only makes the preparation process continuous, controllable, and efficient, but also improves the dispersion uniformity of nanoparticles. Hydrogel hollow fiber doped with carbon nanotubes is fabricated and exhibits superior electrical conductivity (15.8 S m-1), strong flexibility (342.9%), and versatility as wearable sensors for monitoring human motions and collecting physiological electrical signals. Furthermore, we incorporate iron tetroxide nanoparticles into fibers to create magnetic-driven micromotors, which provide trajectory-controlled motion and the ability to move through narrow channels due to their small size. In addition, manganese dioxide nanoparticles are embedded into the fiber walls to create self-propelled micromotors. When placed in a hydrogen peroxide environment, the micromotors can reach a top speed of 615 µm s-1 and navigate hard-to-reach areas. Our nano-doped hollow fiber offers a broad range of applications in wearable electronics and self-propelled machines and creates promising opportunities for sensors and actuators.


Subject(s)
Biosensing Techniques , Microfluidics , Nanotubes, Carbon , Wearable Electronic Devices , Nanotubes, Carbon/chemistry , Humans , Electric Conductivity , Manganese Compounds/chemistry , Nanoparticles , Oxides/chemistry
2.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217639

ABSTRACT

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Subject(s)
Magnoliopsida , Phylogeny , Biodiversity , Plants , Ecosystem , Conservation of Natural Resources
3.
J Environ Manage ; 352: 120016, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38232599

ABSTRACT

To determine the priority control sources, an approach was proposed to evaluate the source-specific contribution to health risks from inhaling PM2.5-bound heavy metals (PBHMs). A total of 482 daily PM2.5 samples were collected from urban and suburban areas of Beijing, China, between 2018 and 2019. In addition to the PMF-PSCF model, a Pb isotopic IsoSource model was built for more reliable source apportionment. By using the comprehensive indicator of disability-adjusted life years (DALYs), carcinogenic and noncarcinogenic health risks could be compared on a unified scale. The study found that the annual average concentrations of the total PBHMs were significantly higher in suburban areas than in urban areas, with significantly higher concentrations during the heating season than during the nonheating season. Comprehensive dust accounted for the largest contribution to the concentration of PBHMs, while coal combustion contributed the most to the DALYs associated with PBHMs. These results suggest that prioritizing the control of coal combustion could effectively reduce the disease burden associated with PBHMs, leading to notable public health benefits.


Subject(s)
Air Pollutants , Metals, Heavy , Beijing , Air Pollutants/analysis , Particulate Matter/analysis , Disability-Adjusted Life Years , Environmental Monitoring/methods , China , Seasons , Coal/analysis , Risk Assessment
4.
Plants (Basel) ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140430

ABSTRACT

The perennial woody plant Hydrangea arborescens 'Annabelle' is of great research value due to its unique mechanism of flower development that occurs in the current year, resulting in decorative flowers that can be enjoyed for a relatively long period of time. However, the mechanisms underlying the regulation of current-year flower development in H. arborescens 'Annabelle' are still not fully understood. In this study, we conducted an associated analysis to explore the core regulating network in H. arborescens 'Annabelle' by combining phenological observations, physiological assays, and transcriptome comparisons across seven flower developmental stages. Through this analysis, we constructed a gene co-expression network (GCN) based on the highest reciprocal rank (HRR), using 509 differentially expressed genes (DEGs) identified from seven flowering-related pathways, as well as the biosynthesis of eight flowering-related phytohormones and signal transduction in the transcriptomic analysis. According to the analysis of the GCN, we identified 14 key genes with the highest functional connectivity that played critical roles in specific development stages. We confirmed that 135 transcription factors (AP2/ERF, bHLH, CO-like, GRAS, MIKC, SBP, WRKY) were highly co-expressed with the 14 key genes, indicating their close associations with the development of current-year flowers. We further proposed a hypothetical model of a gene regulatory network for the development of the whole flower. This model suggested that the photoperiod, aging, and gibberellin pathways, along with the phytohormones abscisic acid (ABA), gibberellin (GA), brassinosteroid (BR), and jasmonic acid (JA), work synergistically to promote the floral transition. Additionally, auxin, GA, JA, ABA, and salicylic acid (SA) regulated the blooming process by involving the circadian clock. Cytokinin (CTK), ethylene (ETH), and SA were key regulators that affected flower senescence. Additionally, several floral integrators (HaLFY, HaSOC1-2, HaAP1, HaFULL, HaAGL24, HaFLC, etc.) were dominant contributors to the development of H. arborescens flowers. Overall, this research provides a comprehensive understanding of the dynamic mechanism underlying the entire process of current-year flower development, thereby offering valuable insights for further studies on the flower development of H. arborescens 'Annabelle'.

5.
Analyst ; 148(23): 5822-5842, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37850340

ABSTRACT

With the development of microfluidic technology, tumor-on-chip models have gradually become a new tool for the study of breast cancer because they can simulate more key factors of the tumor microenvironment compared with traditional models in vitro. Here, we review up-to-date advancements in breast tumor-on-chip models. We summarize and analyze the breast tumor microenvironment (TME), preclinical breast cancer models for TME simulation, fabrication methods of tumor-on-chip models, tumor-on-chip models for TME reconstruction, and applications of breast tumor-on-chip models and provide a perspective on breast tumor-on-chip models. This review will contribute to the construction and design of microenvironments for breast tumor-on-chip models, even the development of the pharmaceutical field, personalized/precision therapy, and clinical medicine.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Humans , Female , Tumor Microenvironment , Computer Simulation , Microfluidics
6.
Sci Adv ; 9(43): eadg2555, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878700

ABSTRACT

Floral symmetry plays an important role in plant-pollinator interactions and may have remarkable impacts on angiosperm diversification. However, spatiotemporal patterns in floral symmetry and drivers of these patterns remain unknown. Here, using newly compiled floral symmetry (actinomorphy versus zygomorphy) data of 279,877 angiosperm species and their distributions and phylogenies, we estimated global geographic patterns and macroevolutionary dynamics of floral symmetry. We found that frequency of actinomorphic species increased with latitude, while that of zygomorphic species decreased. Solar radiation, present-day temperature, and Quaternary temperature change correlated with geographic variation in floral symmetry frequency. Evolutionary transitions from actinomorphy to zygomorphy dominated floral symmetry evolution, although the transition rate decreased with decreasing paleotemperature throughout the Cenozoic. Notably, we found that zygomorphy may not favor diversification of angiosperms as previously observed in some clades. Our study demonstrates the influence of (paleo)climate on spatiotemporal patterns in floral symmetry and challenges previous views about role of flower symmetry in angiosperm diversification.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Phylogeny , Flowers/genetics , Climate , Temperature , Biological Evolution
7.
Environ Pollut ; 337: 122558, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37714401

ABSTRACT

PM2.5 is the main component of haze, and PM2.5-bound heavy metals (PBHMs) can induce various toxic effects via inhalation. However, comprehensive macroanalyses on large scales are still lacking. In this study, we compiled a substantial dataset consisting of the concentrations of eight PBHMs, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, across different cities in China. To improve prediction accuracy, we enhanced the traditional land-use regression (LUR) model by incorporating emission source-related variables and employing the best-fitted machine-learning algorithm, which was applied to predict PBHM concentrations, analyze geographical patterns and assess the health risks associated with metals under different PM2.5 control targets. Our model exhibited excellent performance in predicting the concentrations of PBHMs, with predicted values closely matching measured values. Noncarcinogenic risks exist in 99.4% of the estimated regions, and the carcinogenic risks in all studied regions of the country are within an acceptable range (1 × 10-5-1 × 10-6). In densely populated areas such as Henan, Shandong, and Sichuan, it is imperative to control the concentration of PBHMs to reduce the number of patients with cancer. Controlling PM2.5 effectively decreases both carcinogenic and noncarcinogenic health risks associated with PBHMs, but still exceed acceptable risk level, suggesting that other important emission sources should be given attention.


Subject(s)
Environmental Monitoring , Metals, Heavy , Humans , Risk Assessment , Metals, Heavy/analysis , China , Carcinogens/analysis , Algorithms , Machine Learning , Particulate Matter/analysis
8.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175398

ABSTRACT

The flower induction of Hydrangea macrophylla "Endless Summer" is regulated by a complex gene network that involves multiple signaling pathways to ensure continuous flowering throughout the growing season, but the molecular determinants of flower induction are not yet clear. In this study, genes potentially involved in signaling pathway mediating the regulatory mechanism of flower induction were identified through the transcriptomic profiles, and a hypothetical model for this regulatory mechanism was obtained by an analysis of the available transcriptomic data, suggesting that sugar-, hormone-, and flowering-related genes participated in the flower induction process of H. macrophylla "Endless Summer". The expression profiles of the genes involved in the biosynthesis and metabolism of sugar showed that the beta-amylase gene BAM1 displayed a high expression level at the BS2 stage and implied the hydrolysis of starch. It may be a signaling molecule that promotes the transition from vegetative growth to reproductive growth in H. macrophylla "Endless Summer". Complex hormone regulatory networks involved in abscisic acid (ABA), auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) also induced flower formation in H. macrophylla. ABA participated in flower induction by regulating flowering genes. The high content of IAA and the high expression level of the auxin influx carrier gene LAX5 at the BS2 stage suggested that the flow of auxin between sources and sinks in H. macrophylla is involved in the regulation of floral induction as a signal. In addition, flowering-related genes were mainly involved in the photoperiodic pathway, the aging pathway, and the gibberellin pathway. As a result, multiple pathways, including the photoperiodic pathway, the aging pathway, and the gibberellin pathway, which were mainly mediated by crosstalk between sugar and hormone signals, regulated the molecular network involved in flower induction in H. macrophylla "Endless Summer".


Subject(s)
Hydrangea , Plant Growth Regulators , Plant Growth Regulators/metabolism , Gibberellins/metabolism , Abscisic Acid/metabolism , Flowers/metabolism , Gene Expression Profiling , Indoleacetic Acids/metabolism , Hormones/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant
9.
Proc Biol Sci ; 289(1988): 20221497, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36475435

ABSTRACT

The tree of life (TOL) is severely threatened by climate and land-cover changes. Preserving the TOL is urgent, but has not been included in the post-2020 global biodiversity framework. Protected areas (PAs) are fundamental for biological conservation. However, we know little about the effectiveness of existing PAs in preserving the TOL of plants and how to prioritize PA expansion for better TOL preservation under future climate and land-cover changes. Here, using high-resolution distribution maps of 8732 woody species in China and phylogeny-based Zonation, we find that current PAs perform poorly in preserving the TOL both at present and in 2070s. The geographical coverage of TOL branches by current PAs is approx. 9%, and less than 3% of the identified priority areas for preserving the TOL are currently protected. Interestingly, the geographical coverage of TOL branches by PAs will be improved from 9% to 52-79% by the identified priority areas for PA expansion. Human pressures in the identified priority areas are high, leading to high cost for future PA expansion. We thus suggest that besides nature reserves and national parks, other effective area-based conservation measures should be considered. Our study argues for the inclusion of preserving the TOL in the post-2020 conservation framework, and provides references for decision-makers to preserve the Earth's evolutionary history.


Subject(s)
Geography , Humans , China
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499419

ABSTRACT

Sugar transport and distribution plays an important role in lily bulb development and resistance to abiotic stresses. In this study, a member of the Sugar Will Eventually be Exported Transporters (SWEET) gene family, LoSWEET14, from Oriental hybrid lily 'Sorbonne' was identified. LoSWEET14 encodes a protein of 278 amino acids and is capable of transporting sucrose and some types of hexoses. The transcript level of the LoSWEET14 gene was significantly increased under various stress conditions including drought, cold, salt stresses, and abscisic acid (ABA) treatment. Overexpression of LoSWEET14 in tobacco (Nicotiana tabacum) showed that the transgenic lines had larger leaves, accumulated more soluble sugars, and were more resistant to drought, cold, and salt stresses, while becoming more sensitive to ABA compared with wild-type lines. Promoter analysis revealed that multiple stress-related cis-acting elements were found in the promoter of LoSWEET14. According to the distribution of cis-acting elements, different lengths of 5'-deletion fragments were constructed and the LoSWEET14-pro3(-540 bp) was found to be able to drive GUS gene expression in response to abiotic stresses and ABA treatment. Furthermore, a yeast one hybrid (Y1H) assay proved that the AREB/ABF (ABRE-binding protein/ABRE-binding factor) from lilies (LoABF2) could bind to the promoter of LoSWEET14. These findings indicated that LoSWEET14 is induced by LoABF2 to participate in the ABA signaling pathway to promote soluble sugar accumulation in response to multiple abiotic stresses.


Subject(s)
Lilium , Nicotiana , Nicotiana/genetics , Nicotiana/metabolism , Lilium/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Droughts , Stress, Physiological , Signal Transduction , Sugars/metabolism
11.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430589

ABSTRACT

With its large inflorescences and colorful flowers, Hydrangea macrophylla has been one of the most popular ornamental plants in recent years. However, the formation mechanism of its major ornamental part, the decorative floret sepals, is still not clear. In this study, we compared the transcriptome data of H. macrophylla 'Endless Summer' from the nutritional stage (BS1) to the blooming stage (BS5) and annotated them into the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The 347 identified differentially expressed genes (DEGs) associated with flower development were subjected to a trend analysis and a protein-protein interaction analysis. The combined analysis of the two yielded 60 DEGs, including four MADS-box transcription factors (HmSVP-1, HmSOC1, HmAP1-2, and HmAGL24-3) and genes with strong connectivity (HmLFY and HmUFO). In addition, 17 transcription factors related to the ABCDE model were screened, and key candidate genes related to the development of decorative floret sepals in H. macrophylla were identified by phylogenetic and expression pattern analysis, including HmAP1-1, HmAP1-2, HmAP1-3, HmAP2-3, HmAP2-4, and HmAP2-5. On this basis, a gene regulatory network model of decorative sepal development was also postulated. Our results provide a theoretical basis for the study of the formation mechanism of decorative floret sepals and suggest a new direction for the molecular breeding of H. macrophylla.


Subject(s)
Hydrangea , Phylogeny , Flowers/genetics , Seasons , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077445

ABSTRACT

SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis 'Somei-yoshino' and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis 'Somei-yoshino' and provide more reference information of the function of SPL gene in flowering.


Subject(s)
Arabidopsis , Oryza , Prunus , Arabidopsis/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Multigene Family , Oryza/genetics , Phylogeny , Plant Proteins/metabolism , Prunus/genetics , Prunus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
ACS Appl Mater Interfaces ; 14(28): 32433-32443, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35803257

ABSTRACT

Simple, low-cost, and high-performance atmospheric water harvesting (AWH) still remains challenging in the context of global water shortage. Here, we present a simple and low-cost macroporous hydrogel for high-performance AWH to address this challenge. We employed an innovative strategy of pore foaming and vacuum drying to rationally fabricate a macroporous hydrogel. The hydrogel is endowed with a macroporous structure and a high specific surface area, enabling sufficient contact of the inner sorbent with outside air and high-performance AWH. The experiments demonstrate that macroporous hydrogels can achieve high-performance AWH with a broad range of sorption humidity [relative humidity (RH) from 100% to even lower than 20%], high water sorption capacity (highest 433.72% of hydrogel's own weight at ∼98% RH, 25 °C within 60 h), rapid vapor capturing (the sorption efficiency is as high as 0.32 g g-1 h-1 in the first 3 h at 90% RH, 25 °C), unique durability, low desorption temperature (∼50 °C, lowest), and high water-releasing rate (release 99.38% of the sorbed water under 500 W m-2 light for 6 h). The results show that this macroporous hydrogel can sorb water more than 193.46% of its own weight overnight (13 h) at a RH of ∼90%, 25 °C and release as high as 99.38% of the sorbed water via the photothermal effect. It is estimated that the daily water yield can reach up to approximately 2.56 kg kg-1 day-1 in real outdoor conditions, enabling daily minimum water consumption of an adult. Our simple, affordable, and easy-to-scale-up macroporous hydrogel can not only unleash the unlimited possibilities for large-scale and high-performance AWH but also offer promising opportunities for functional materials, soft matter, flexible electronics, tissue engineering, and biomedical applications.

14.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457135

ABSTRACT

During the growth cycle of lilies, assimilates undergo a process of accumulation, consumption and reaccumulation in bulbs and are transported and allocated between aboveground and underground organs and tissues. The sink-source relationship changes with the allocation of assimilates, affecting the vegetative growth and morphological establishment of lilies. In this study, the carbohydrate contents in different tissues of five critical stages during lily development were measured to observe the assimilates allocation. The results showed bulbs acted as the main source to provide energy before the budding stage (S3); after the flowering stage (S4), bulbs began to accumulate assimilates as a sink organ again. During the period when the plant height was 30cm with leaf-spread (S2), leaves mainly accumulated assimilates from bulbs through the symplastic pathway, while when leaves were fully expanded, it transformed to export carbohydrates. At the S4 stage, flowers became a new active sink with assimilates influx. To further understand the allocation of assimilates, 16 genes related to sugar transport and metabolism (ST genes) were identified and categorized into different subfamilies based on the phylogenetic analysis, and their protein physicochemical properties were also predicted. Tissue-specific analysis showed that most of the genes were highly expressed in stems and petals, and it was mainly the MST (monosaccharide transporter) genes that were obviously expressed in petals during the S4 stage, suggesting that they may be associated with the accumulation of carbohydrates in flowers and thus affect flower development process. LoSWEET14 (the Sugar will eventually be exported transporters) was significantly correlated with starch in scales and with soluble sugar in leaves. Sugar transporters LoHXT6 and LoSUT1 were significantly correlated with soluble sugar and sucrose in leaves, suggesting that these genes may play key roles in the accumulation and transportation of assimilates in lilies. In addition, we analyzed the expression patterns of ST genes under different abiotic stresses, and the results showed that all genes were significantly upregulated. This study lays a solid foundation for further research on molecular mechanism of sink-source change and response to abiotic stresses in lilies.


Subject(s)
Lilium , Gene Expression Regulation, Plant , Lilium/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Phylogeny , Stress, Physiological/genetics , Sucrose/metabolism , Sugars/metabolism
15.
Ecol Lett ; 24(9): 1835-1847, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34121305

ABSTRACT

Angiosperm sexual systems are fundamental to the evolution and distribution of plant diversity, yet spatiotemporal patterns in angiosperm sexual systems and their drivers remain poorly known. Using data on sexual systems and distributions of 68453 angiosperm species, we present the first global maps of sexual system frequencies and evaluate sexual system evolution during the Cenozoic. Frequencies of dioecy and monoecy increase with latitude, while hermaphrodites are more frequent in warm and arid regions. Transitions to dioecy from other states were higher than to hermaphroditism, but transitions away from dioecy increased since the Cenozoic, suggesting that dioecy is not an evolutionary end point. Transitions between hermaphroditism and dioecy increased, while transitions to monoecy decreased with paleo-temperature when paleo-temperature >0℃. Our study demonstrates the biogeography of angiosperm sexual systems from a macroecological perspective, and enhances our understanding of plant diversity patterns and their response to climate change.


Subject(s)
Magnoliopsida , Biological Evolution , Plants , Reproduction
16.
Front Plant Sci ; 12: 604272, 2021.
Article in English | MEDLINE | ID: mdl-33796123

ABSTRACT

Fruit type is a key reproductive trait associated with plant evolution and adaptation. However, large-scale geographical patterns in fruit type composition and the mechanisms driving these patterns remain to be established. Contemporary environment, plant functional traits and evolutionary age may all influence fruit type composition, while their relative importance remains unclear. Here, using data on fruit types, plant height and distributions of 28,222 (∼ 90.1%) angiosperm species in China, we analyzed the geographical patterns in the proportion of fleshy-fruited species for all angiosperms, trees, shrubs, and herbaceous species separately, and compared the relative effects of contemporary climate, ecosystem primary productivity, plant height, and evolutionary age on these patterns. We found that the proportion of fleshy-fruited species per grid cell for all species and different growth forms all showed significant latitudinal patterns, being the highest in southeastern China. Mean plant height per grid cell and actual evapotranspiration (AET) representing ecosystem primary productivity were the strongest drivers of geographical variations in the proportion of fleshy-fruited species, but their relative importance varied between growth forms. From herbaceous species to shrubs and trees, the relative effects of mean plant height decreased. Mean genus age had significant yet consistently weaker effects on proportion of fleshy-fruited species than mean plant height and AET, and environmental temperature and precipitation contributed to those of only trees and shrubs. These results suggest that biotic and environmental factors and evolutionary age of floras jointly shape the pattern in proportion of fleshy-fruited species, and improve our understanding of the mechanisms underlying geographical variations in fruit type composition. Our study also demonstrates the need of integrating multiple biotic and abiotic factors to fully understand the drivers of large-scale patterns of plant reproductive traits.

17.
Sci Total Environ ; 783: 146896, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866165

ABSTRACT

Elevational range shifts of mountain species in response to climate change have profound impact on mountain biodiversity. However, current evidence indicates great controversies in the direction and magnitude of elevational range shifts across species and regions. Here, using historical and recent occurrence records of 83 plant species in a subtropical mountain, Mt. Gongga (Sichuan, China), we evaluated changes in species elevation centroids and limits (upper and lower) along elevational gradients, and explored the determinants of elevational changes. We found that 63.9% of the species shifted their elevation centroids upward, while 22.9% shifted downward. The changes in centroid elevations and range size were more strongly correlated with changes in lower than upper limits of species elevational ranges. The magnitude of centroid elevation shifts was larger than predicted by climate warming and precipitation changes. Our results show complex changes in species elevational distributions and range sizes in Mt. Gongga, and that climate change, species traits and climate adaptation of species all influenced their elevational movement. As Mt. Gongga is one of the global biodiversity hotspots, and contains many threatened plant species, these findings provide support to future conservation planning.


Subject(s)
Altitude , Climate Change , Biodiversity , China , Ecosystem , Plants
18.
FASEB J ; 35(5): e21549, 2021 05.
Article in English | MEDLINE | ID: mdl-33913198

ABSTRACT

T cell factor-1 (TCF-1) (encoded by the TCF7 gene) is a transcription factor that plays important role during the T cell development and differentiation for T cell to exercise its functions including producing memory T cells. Not only TCF-1 can modulate the T cell development but also exerts various effects on the differentiation and function of mature CD8+ T cells. In addition, it drives the production and maintenance of the immune response of CD8+ T cells after PD-1 checkpoint blockade therapy. TCF-1 can serve as a potential target of immunotherapy and may provide promising novel treatment strategies for patients with cancer and infections. Moreover, TCF-1 is a potential biomarker of CD8+ T cell functionality to predict the efficacy of immunotherapy in fighting against cancer and infections. Herein, we summarize the role of TCF-1 in T cell development and its applications in the treatment of cancer and infectious diseases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Communicable Diseases/therapy , Immunologic Memory , Immunotherapy , Neoplasms/therapy , T Cell Transcription Factor 1/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Communicable Diseases/immunology , Gene Expression Regulation , Humans , Neoplasms/immunology , T Cell Transcription Factor 1/genetics
19.
Front Plant Sci ; 11: 1222, 2020.
Article in English | MEDLINE | ID: mdl-32849756

ABSTRACT

Plant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.

20.
Ecol Lett ; 23(6): 1003-1013, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32249502

ABSTRACT

A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size-primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems.


Subject(s)
Ecosystem , Magnoliopsida , China , North America , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...