Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 129: 155615, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615493

ABSTRACT

BACKGROUND: Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE: Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN: A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS: MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS: GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION: CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Lung Neoplasms , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Humans , Mice , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms/secondary , Lung Neoplasms/drug therapy , HCT116 Cells , Signal Transduction/drug effects , Cell Line, Tumor , Male , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL