Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 87(1): 77, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806738

ABSTRACT

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.


Subject(s)
Biodiversity , Geologic Sediments , Gram-Positive Bacteria , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , Mexico , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/classification , RNA, Ribosomal, 16S/genetics , Bioprospecting , Phylogeny , Anti-Bacterial Agents/pharmacology , Seawater/microbiology
2.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885912

ABSTRACT

Mangrove sediment ecosystems in the coastal areas of the Yucatan peninsula are unique environments, influenced by their karstic origin and connection with the world's largest underground river. The microbial communities residing in these sediments are influenced by the presence of mangrove roots and the trading chemistry for communication between sediment bacteria and plant roots can be targeted for secondary metabolite research. To explore the secondary metabolite production potential of microbial community members in mangrove sediments at the "El Palmar" natural reserve in Sisal, Yucatan, a combined meta-omics approach was applied. The effects of a cultivation medium reported to select for actinomycetes within mangrove sediments' microbial communities was also analyzed. The metabolome of the microbial communities was analyzed by high-resolution liquid chromatography-tandem mass spectrometry, and molecular networking analysis was used to investigate if known natural products and their variants were present. Metagenomic results suggest that the sediments from "El Palmar" harbor a stable bacterial community independently of their distance from mangrove tree roots. An unexpected decrease in the observed abundance of actinomycetes present in the communities occurred when an antibiotic-amended medium considered to be actinomycete-selective was applied for a 30-day period. However, the use of this antibiotic-amended medium also enhanced production of secondary metabolites within the microbial community present relative to the water control, suggesting the treatment selected for antibiotic-resistant bacteria capable of producing a higher number of secondary metabolites. Secondary metabolite mining of "El Palmar" microbial community metagenomes identified polyketide synthase and non-ribosomal peptide synthetases' biosynthetic genes in all analyzed metagenomes. The presence of these genes correlated with the annotation of several secondary metabolites from the Global Natural Product Social Molecular Networking database. These results highlight the biotechnological potential of the microbial communities from "El Palmar", and show the impact selective media had on the composition of communities of actinobacteria.


Subject(s)
Actinobacteria/isolation & purification , Geologic Sediments/microbiology , Microbiota , Actinobacteria/genetics , Actinobacteria/metabolism , Metabolome , Metabolomics , Metagenome , Metagenomics
3.
Microb Ecol ; 77(4): 839-851, 2019 May.
Article in English | MEDLINE | ID: mdl-30761424

ABSTRACT

The quest for novel natural products has recently focused on the marine environment as a source for novel microorganisms. Although isolation of marine-derived actinomycete strains is now common, understanding their distribution in the oceans and their adaptation to this environment can be helpful in the selection of isolates for further novel secondary metabolite discovery. This study explores the taxonomic diversity of marine-derived actinomycetes from distinct environments in the coastal areas of the Yucatan Peninsula and their adaptation to the marine environment as a first step towards novel natural product discovery. The use of simple ecological principles, for example, phylogenetic relatedness to previously characterized actinomycetes or seawater requirements for growth, to recognize isolates with adaptations to the ocean in an effort to select for marine-derived actinomycete to be used for further chemical studies. Marine microbial environments are an important source of novel bioactive natural products and, together with methods such as genome mining for detection of strains with biotechnological potential, ecological strategies can bring useful insights in the selection and identification of marine-derived actinomycetes for novel natural product discovery.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/analysis , Biological Products/analysis , Drug Discovery/methods , Seawater/analysis , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...