Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 15191, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312423

ABSTRACT

The primary goal of this study is to localize a defect (cavity) in a curved geometry. Curved topologies exhibit multiple resonances and the presence of hotspots for acoustic waves. Launching acoustic waves along a specific direction e.g. by means of an extended laser source reduces the complexity of the scattering problem. We performed experiments to demonstrate the use of a laser line source and verified the experimental results in FEM simulations. In both cases, we could locate and determine the size of a pit in a steel hemisphere which allowed us to visualize the defect on a 3D model of the sample. Such an approach could benefit patients by enabling contactless inspection of acetabular cups.

2.
Sci Rep ; 9(1): 5189, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30914658

ABSTRACT

Studies in optics and acoustics have employed metamaterial lenses to achieve sub-wavelength localization, e.g. a recently introduced concept called 'acoustojet' which in simulations localizes acoustic energy to a spot smaller than λ/2. However previous experimental results on the acoustojet have barely reached λ/2-wide localization. Here we show, by simulations and experiments, that a sub-λ/2 wide localization can be achieved by translating the concept of a photonic jet into the acoustic realm. We performed nano- to macroscale molecular dynamics (MD) and finite element method (FEM) simulations as well as macroscale experiments. We demonstrated that by choosing a suitable size cylindrical lens, and by selecting the speed-of-sound ratio between the lens material(s) and the surrounding medium, an acoustic jet ('acoustic sheet') is formed with a full width at half maximum (FWHM) less than λ/2. The results show, that the acoustojet approach can be experimentally realized with easy-to-manufacture acoustic lenses at the macroscale. MD simulations demonstrate that the concept can be extended to coherent phonons at nanoscale. Finally, our FEM simulations identify some micrometer size structures that could be realized in practice. Our results may contribute to starting a new era of super resolution acoustic imaging: We foresee that jet generating constructs can be readily manufactured, since suitable material combinations can be found from nanoscale to macroscale. Tight focusing of mechanical energy is highly desirable in e.g. electronics, materials science, medicine, biosciences, and energy harvesting.

3.
J Environ Sci (China) ; 41: 128-137, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26969058

ABSTRACT

This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Seasons , Snow/chemistry , Sphagnopsida/chemistry , Finland
SELECTION OF CITATIONS
SEARCH DETAIL
...