Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cell Surf ; 11: 100127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873189

ABSTRACT

Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants. Our data revealed that chitin is the most characteristic component of the fungal cell wall, and was found to be in a higher proportion in the early divergent groups. The Mucoromycota species possess few glucans, but instead have other monosaccharides such as fucose and glucuronic acid that are almost exclusively found in their cell walls. Additionally, we observed that hexoses (glucose, mannose and galactose) accumulate in much higher proportions in species belonging to Dikarya. Our data demonstrate a clear relationship between phylogenetic position and fungal cell wall carbohydrate composition and lay the foundation for a better understanding of their evolution and their role in plant interactions.

2.
Microbiol Spectr ; : e0034824, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888349

ABSTRACT

The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and ß-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in ß-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.

3.
Cell Surf ; 11: 100124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600908

ABSTRACT

Pattern-Triggered Immunity (PTI) in plants is activated upon recognition by Pattern Recognition Receptors (PRRs) of Damage- and Microbe-Associated Molecular Patterns (DAMPs and MAMPs) from plants or microorganisms, respectively. An increasing number of identified DAMPs/MAMPs are carbohydrates from plant cell walls and microbial extracellular layers, which are perceived by plant PRRs, such as LysM and Leucine Rich Repeat-Malectin (LRR-MAL) receptor kinases (RKs). LysM-RKs (e.g. CERK1, LYK4 and LYK5) are needed for recognition of fungal MAMP chitohexaose (ß-1,4-D-(GlcNAc)6, CHI6), whereas IGP1/CORK1, IGP3 and IGP4 LRR-MAL RKs are required for perception of ß-glucans, like cellotriose (ß-1,4-D-(Glc)3, CEL3) and mixed-linked glucans. We have explored the diversity of carbohydrates perceived by Arabidopsis thaliana seedlings by determining PTI responses upon treatment with different oligosaccharides and polysaccharides. These analyses revealed that plant oligosaccharides from xylans [ß-1,4-D-(xylose)4 (XYL4)], glucuronoxylans and α-1,4-glucans, and polysaccharides from plants and seaweeds activate PTI. Cross-elicitation experiments of XYL4 with other glycans showed that the mechanism of recognition of XYL4 and the DAMP 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) shares some features with that of CEL3 but differs from that of CHI6. Notably, XYL4 and XA3XX perception is impaired in igp1/cork1, igp3 and igp4 mutants, and almost not affected in cerk1 lyk4 lyk5 triple mutant. XYL4 perception is conserved in different plant species since XYL4 pre-treatment triggers enhanced disease resistance in tomato to Pseudomonas syringae pv tomato DC3000 and PTI responses in wheat. These results expand the number of glycans triggering plant immunity and support IGP1/CORK1, IGP3 and IGP4 relevance in Arabidopsis thaliana glycans perception and PTI activation. Significance Statement: The characterization of plant immune mechanisms involved in the perception of carbohydrate-based structures recognized as DAMPs/MAMPs is needed to further understand plant disease resistance modulation. We show here that IGP1/CORK1, IGP3 and IGP4 LRR-MAL RKs are required for the perception of carbohydrate-based DAMPs ß-1,4-D-(xylose)4 (XYL4) and 33-α-L-arabinofuranosyl-xylotetraose (XA3XX), further expanding the function of these LRR-MAL RKs in plant glycan perception and immune activation.

4.
Plant Cell ; 36(4): 1007-1035, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38124479

ABSTRACT

Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Trichomes/genetics , Trichomes/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Cell Wall/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Plant Diseases/microbiology , Disease Resistance/genetics , Vesicular Transport Proteins/metabolism
6.
Plant Mol Biol ; 113(6): 401-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37129736

ABSTRACT

Plant cell walls are complex structures mainly made up of carbohydrate and phenolic polymers. In addition to their structural roles, cell walls function as external barriers against pathogens and are also reservoirs of glycan structures that can be perceived by plant receptors, activating Pattern-Triggered Immunity (PTI). Since these PTI-active glycans are usually released upon plant cell wall degradation, they are classified as Damage Associated Molecular Patterns (DAMPs). Identification of DAMPs imply their extraction from plant cell walls by using multistep methodologies and hazardous chemicals. Subcritical water extraction (SWE) has been shown to be an environmentally sustainable alternative and a simplified methodology for the generation of glycan-enriched fractions from different cell wall sources, since it only involves the use of water. Starting from Equisetum arvense cell walls, we have explored two different SWE sequential extractions (isothermal at 160 ºC and using a ramp of temperature from 100 to 160 ºC) to obtain glycans-enriched fractions, and we have compared them with those generated with a standard chemical-based wall extraction. We obtained SWE fractions enriched in pectins that triggered PTI hallmarks in Arabidopsis thaliana such as calcium influxes, reactive oxygen species production, phosphorylation of mitogen activated protein kinases and overexpression of immune-related genes. Notably, application of selected SWE fractions to pepper plants enhanced their disease resistance against the fungal pathogen Sclerotinia sclerotiorum. These data support the potential of SWE technology in extracting PTI-active fractions from plant cell wall biomass containing DAMPs and the use of SWE fractions in sustainable crop production.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Equisetum , Disease Resistance , Arabidopsis Proteins/genetics , Equisetum/metabolism , Plant Immunity , Biomass , Arabidopsis/genetics , Plants/metabolism , Cell Wall/metabolism , Polysaccharides/metabolism , Plant Diseases/microbiology
7.
Plant J ; 113(4): 833-850, 2023 02.
Article in English | MEDLINE | ID: mdl-36582174

ABSTRACT

The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked ß-1,3/ß-1,4-glucans (MLGs; e.g. ß-1,4-D-(Glc)2 -ß-1,3-D-Glc, MLG43) and cellulose (e.g. ß-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. ß-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD  = 1.19 ± 0.03 µm) and cellopentaose (KD  = 1.40 ± 0.01 µM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Leucine/metabolism , Glucans/metabolism , Cellulose/metabolism , Plant Immunity/genetics , Plants/metabolism , Oligosaccharides/metabolism
8.
Plants (Basel) ; 10(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34451558

ABSTRACT

The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA priming can be explained, at least partially, by a drastic CW remodeling.

9.
Plant J ; 106(3): 601-615, 2021 05.
Article in English | MEDLINE | ID: mdl-33544927

ABSTRACT

Pattern-triggered immunity (PTI) is activated in plants upon recognition by pattern recognition receptors (PRRs) of damage- and microbe-associated molecular patterns (DAMPs and MAMPs) derived from plants or microorganisms, respectively. To understand better the plant mechanisms involved in the perception of carbohydrate-based structures recognized as DAMPs/MAMPs, we have studied the ability of mixed-linked ß-1,3/1,4-glucans (MLGs), present in some plant and microbial cell walls, to trigger immune responses and disease resistance in plants. A range of MLG structures were tested for their capacity to induce PTI hallmarks, such as cytoplasmic Ca2+ elevations, reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. These analyses revealed that MLG oligosaccharides are perceived by Arabidopsis thaliana and identified a trisaccharide, ß-d-cellobiosyl-(1,3)-ß-d-glucose (MLG43), as the smallest MLG structure triggering strong PTI responses. These MLG43-mediated PTI responses are partially dependent on LysM PRRs CERK1, LYK4 and LYK5, as they were weaker in cerk1 and lyk4 lyk5 mutants than in wild-type plants. Cross-elicitation experiments between MLG43 and the carbohydrate MAMP chitohexaose [ß-1,4-d-(GlcNAc)6 ], which is also perceived by these LysM PRRs, indicated that the mechanism of MLG43 recognition could differ from that of chitohexaose, which is fully impaired in cerk1 and lyk4 lyk5 plants. MLG43 treatment confers enhanced disease resistance in A. thaliana to the oomycete Hyaloperonospora arabidopsidis and in tomato and pepper to different bacterial and fungal pathogens. Our data support the classification of MLGs as a group of carbohydrate-based molecular patterns that are perceived by plants and trigger immune responses and disease resistance.


Subject(s)
Cell Wall/metabolism , Disease Resistance , Plant Immunity , beta-Glucans/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , Calcium/metabolism , Capsicum/immunology , Capsicum/metabolism , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Oomycetes/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Trisaccharides
10.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33509925

ABSTRACT

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Subject(s)
Arabidopsis/cytology , Arabidopsis/immunology , Cell Wall/metabolism , Disease Resistance , Plant Diseases/immunology , Arabidopsis/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Phenotype , Plant Diseases/genetics , Spectroscopy, Fourier Transform Infrared
11.
Plant J ; 105(6): 1710-1726, 2021 03.
Article in English | MEDLINE | ID: mdl-33316845

ABSTRACT

Microbial and plant cell walls have been selected by the plant immune system as a source of microbe- and plant damage-associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD-PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM-PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4-ß-d-(GlcNAc)6 ) and laminarihexaose (1,3-ß-d-(Glc)6 ). Our in silico results predicted CERK1 interactions with 1,4-ß-d-(GlcNAc)6 whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co-receptor for its recognition. These in silico results were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs-LysM-PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4-ß-d-(Glc)6 (cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsis cerk1 mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein-glycan interactions and provide information on immune responses activated by glycoligands.


Subject(s)
Plant Diseases/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Oligosaccharides/metabolism , Plant Immunity/genetics , Plant Immunity/physiology , Receptors, Pattern Recognition/metabolism , Signal Transduction/physiology
12.
Cell Surf ; 6: 100039, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32743151

ABSTRACT

Chitin is an important fungal cell wall component that is cross-linked to ß-glucan for structural integrity. Acquisition of chitin to glucan cross-links has previously been shown to be performed by transglycosylation enzymes in Saccharomyces cerevisiae, called Congo Red hypersensitive (Crh) enzymes. Here, we characterized the impact of deleting all seven members of the crh gene family (crhA-G) in Aspergillus niger on cell wall integrity, cell wall composition and genome-wide gene expression. In this study, we show that the seven-fold crh knockout strain shows slightly compact growth on plates, but no increased sensitivity to cell wall perturbing compounds. Additionally, we found that the cell wall composition of this knockout strain was virtually identical to that of the wild type. In congruence with these data, genome-wide expression analysis revealed very limited changes in gene expression and no signs of activation of the cell wall integrity response pathway. However, deleting the entire crh gene family in cell wall mutants that are deficient in either galactofuranose or α-glucan, mainly α-1,3-glucan, resulted in a synthetic growth defect and an increased sensitivity towards Congo Red compared to the parental strains, respectively. Altogether, these results indicate that loss of the crh gene family in A. niger does not trigger the cell wall integrity response, but does play an important role in ensuring cell wall integrity in mutant strains with reduced galactofuranose or α-glucan.

13.
Front Plant Sci ; 11: 1210, 2020.
Article in English | MEDLINE | ID: mdl-32849751

ABSTRACT

Immune responses in plants can be triggered by damage/microbe-associated molecular patterns (DAMPs/MAMPs) upon recognition by plant pattern recognition receptors (PRRs). DAMPs are signaling molecules synthesized by plants or released from host cellular structures (e.g., plant cell walls) upon pathogen infection or wounding. Despite the hypothesized important role of plant cell wall-derived DAMPs in plant-pathogen interactions, a very limited number of these DAMPs are well characterized. Recent work demonstrated that pectin-enriched cell wall fractions extracted from the cell wall mutant impaired in Arabidopsis Response Regulator 6 (arr6), that showed altered disease resistance to several pathogens, triggered more intense immune responses than those activated by similar cell wall fractions from wild-type plants. It was hypothesized that arr6 cell wall fractions could be differentially enriched in DAMPs. In this work, we describe the characterization of the previous immune-active fractions of arr6 showing the highest triggering capacities upon further fractionation by chromatographic means. These analyses pointed to a role of pentose-based oligosaccharides triggering plant immune responses. The characterization of several pentose-based oligosaccharide structures revealed that ß-1,4-xylooligosaccharides of specific degrees of polymerization and carrying arabinose decorations are sensed as DAMPs by plants. Moreover, the pentasaccharide 33-α-L-arabinofuranosyl-xylotetraose (XA3XX) was found as a highly active DAMP structure triggering strong immune responses in Arabidopsis thaliana and enhancing crop disease resistance.

14.
Mol Plant Microbe Interact ; 33(11): 1299-1314, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32720872

ABSTRACT

The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.


Subject(s)
Arabidopsis/microbiology , Ascomycota , Genes, Fungal , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/pathogenicity
15.
Mol Plant Microbe Interact ; 33(5): 767-780, 2020 May.
Article in English | MEDLINE | ID: mdl-32023150

ABSTRACT

The cytokinin signaling pathway, which is mediated by Arabidopsis response regulator (ARR) proteins, has been involved in the modulation of some disease-resistance responses. Here, we describe novel functions of ARR6 in the control of plant disease-resistance and cell-wall composition. Plants impaired in ARR6 function (arr6) were more resistant and susceptible, respectively, to the necrotrophic fungus Plectosphaerella cucumerina and to the vascular bacterium Ralstonia solanacearum, whereas Arabidopsis plants that overexpress ARR6 showed the opposite phenotypes, which further support a role of ARR6 in the modulation of disease-resistance responses against these pathogens. Transcriptomics and metabolomics analyses revealed that, in arr6 plants, canonical disease-resistance pathways, like those activated by defensive phytohormones, were not altered, whereas immune responses triggered by microbe-associated molecular patterns were slightly enhanced. Cell-wall composition of arr6 plants was found to be severely altered compared with that of wild-type plants. Remarkably, pectin-enriched cell-wall fractions extracted from arr6 walls triggered more intense immune responses than those activated by similar wall fractions from wild-type plants, suggesting that arr6 pectin fraction is enriched in wall-related damage-associated molecular patterns, which trigger immune responses. This work supports a novel function of ARR6 in the control of cell-wall composition and disease resistance and reinforces the role of the plant cell wall in the modulation of specific immune responses.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cell Wall/chemistry , Disease Resistance , Plant Diseases/genetics , Arabidopsis/cytology , Gene Expression Regulation, Plant , Humans , Plant Cells , Plant Diseases/microbiology , Plant Immunity
16.
Mol Plant Microbe Interact ; 32(4): 464-478, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30387369

ABSTRACT

Genetic ablation of the ß subunit of the heterotrimeric G protein complex in agb1-2 confers defective activation of microbe-associated molecular pattern (MAMP)-triggered immunity, resulting in agb1-2 enhanced susceptibility to pathogens like the fungus Plectosphaerella cucumerina BMM. A mutant screen for suppressors of agb1-2 susceptibility (sgb) to P. cucumerina BMM identified sgb10, a new null allele (mkp1-2) of the mitogen-activated protein kinase phosphatase 1 (MKP1). The enhanced susceptibility of agb1-2 to the bacterium Pseudomonas syringae pv. tomato DC3000 and the oomycete Hyaloperonospora arabidopsidis is also abrogated by mkp1-2. MKP1 negatively balances production of reactive oxygen species (ROS) triggered by MAMPs, since ROS levels are enhanced in mkp1. The expression of RBOHD, encoding a NADPH oxidase-producing ROS, is upregulated in mkp1 upon MAMP treatment or pathogen infection. Moreover, MKP1 negatively regulates RBOHD activity, because ROS levels upon MAMP treatment are increased in mkp1 plants constitutively overexpressing RBOHD (35S::RBOHD mkp1). A significant reprograming of mkp1 metabolic profile occurs with more than 170 metabolites, including antimicrobial compounds, showing differential accumulation in comparison with wild-type plants. These results suggest that MKP1 functions downstream of the heterotrimeric G protein during MAMP-triggered immunity, directly regulating the activity of RBOHD and ROS production as well as other immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Disease Resistance , Gene Expression Regulation, Plant , Protein Tyrosine Phosphatases , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascomycota/physiology , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Pseudomonas syringae/physiology , Reactive Oxygen Species/metabolism
17.
ACS Appl Bio Mater ; 1(6): 1880-1892, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-34996289

ABSTRACT

The structure of fucoidan isolated from Laminaria hyperborea was elucidated and chemically tailored in order to obtain a clear structure-function relationship on bioactive properties with a minimal amount of variations among the tested molecules. Analysis revealed a sugar composition of 97.8% fucose and 2.2% galactose. Analysis of the glycosidic linkages showed (1→3)-α-l-fuco-pyranose (31.9%) to be the dominant residue, followed by 1→2-linked (13.2%) and 1→4-linked (7.7%) fuco-pyranose as well as a high degree of branching (22.4%). Inductively coupled plasma mass spectrometry (ICP-MS) revealed a sulfate content of 53.8% (degree of sulfation (DS) = 1.7). Raman spectroscopy determined SO4 located axial at 4C and equatorial at 2C as well as an absence of acetylation. SEC-MALS analysis determined a high molecular weight (Mw = 469 kDa), suggesting a highly flexible main chain with short side chains. Both chemical shifts of the fucoidan, proton, and carbon were assigned by NMR and revealed a highly heterogeneous structure in terms of glycosidic linkages. Bioactivity was assessed using a lepirudin-based whole blood model. The immediate responses by coagulation and complement cascades were measured by prothrombine factor 1 and 2 (PTF1.2) and the terminal complement complex (TCC). Cytokines involved in inflammation were detected in a 27-plex cytokine assay. Fucoidan with a high Mw and DS inhibited coagulation, complement, and the cytokines PDGF-BB, RANTES, and IP-10, while activating MCP-1. These effects were obtained at the concentration of 1000 ug/mL and partly at 100 ug/mL. In low concentrations (10 ug/mL), a coagulation stimulating effect of highly sulfated fucoidans (DS = 1.7, Mw = 469 kDa or 20.3) was obtained. These data point to a multitude of effects linked to the sulfation degree that needs further mechanistic exploration.

18.
Plant J ; 93(4): 614-636, 2018 02.
Article in English | MEDLINE | ID: mdl-29266460

ABSTRACT

Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.


Subject(s)
Cell Wall/metabolism , Plant Diseases/immunology , Plant Immunity/physiology , Cell Wall/immunology , Cell Wall/microbiology , Cellulose/biosynthesis , Disease Resistance/physiology , Glucans/metabolism , Host-Pathogen Interactions , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pectins/metabolism , Plant Cells/immunology , Plant Cells/metabolism , Plant Cells/microbiology , Polysaccharides/metabolism , Receptors, Pattern Recognition/immunology
19.
Plant J ; 93(1): 34-49, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083116

ABSTRACT

Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [ß-1,4-N-acetylglucosamine oligomers, (GlcNAc)n ] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc)4-8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-ß-d-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-ß-d-(Glc)6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-ß-d-(Glc)6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-ß-d-(Glc)6 at effective concentrations similar to those of (GlcNAc)4 . These data support that plants, like animals, have selected as MAMPs the linear 1,3-ß-d-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-ß-d-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Ascomycota/physiology , Plant Diseases/immunology , Plant Immunity/drug effects , Protein Serine-Threonine Kinases/metabolism , beta-Glucans/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Oligosaccharides/pharmacology , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/genetics , Receptors, Pattern Recognition/metabolism
20.
Plant J ; 92(3): 386-399, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28792629

ABSTRACT

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gß- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Xylans/metabolism , Abscisic Acid/metabolism , Acetylation , Acetyltransferases , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Ascomycota/physiology , Cell Wall/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , Gene Expression Regulation, Plant , Heterotrimeric GTP-Binding Proteins/genetics , Membrane Proteins , Models, Biological , Mutation , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Pseudomonas syringae/physiology , Seedlings/genetics , Seedlings/immunology , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...