Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 98(2): 471-479, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127129

ABSTRACT

Many workers can be exposed simultaneously to heat and volatile chemicals. In a controlled human exposure study, it was observed that an increase in ambient temperature was associated with increased blood concentrations for acetone and toluene. Based on the expected changes in physiological parameters that occur with an increase in ambient temperature, we aimed to develop a PBPK model for acetone and toluene that could account for the impact of temperature on the kinetics of these solvents. Changes in temperature-dependent physiological parameters (i.e. blood flows, cardiac output, alveolar ventilation) based on recent measurements in volunteers were introduced in the PBPK models to simulate observed blood concentrations for different temperature exposure conditions. Because initial simulations did not adequately predict solvent kinetics at any temperature, the most sensitive parameter (alveolar ventilation; Qp) was, therefore, optimized on experimental acetone blood concentrations to obtain a relationship with temperature. The new temperature-dependent Qp relationship gave Qp values consistent with the literature and estimated a mean increase of 19% at 30 °C (wet bulb globe temperature) compared to 21 °C. The integration of a new temperature-dependent Qp relationship in the PBPK toluene model yielded adequate simulations of the experimental data for toluene in blood, exhaled air and urine. With further validation with other solvents, the temperature-dependant PBPK model could be a useful tool to better assess the risks of simultaneous exposure to volatile chemicals and heat stress and interpret biomonitoring data in workers as well as in the general population. TRN: NCT02659410, Registration date: January 15, 2016.


Subject(s)
Acetone , Toluene , Humans , Acetone/toxicity , Heat-Shock Response , Models, Biological , Solvents/toxicity , Toluene/toxicity , Toxicokinetics
2.
J Toxicol Environ Health A ; 85(8): 307-335, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34991435

ABSTRACT

Minute ventilation rates (VE), alveolar ventilation rates (VA), cardiac outputs (Q), liver blood flow (LBF) and kidneys blood flows (KBF) for physiologically based toxicokinetic modeling and occupational health risk assessment in active workers have apparently not been determined. Minute energy expenditure rates (E) and oxygen consumption rates (VO2) in workers during exertions and their aggregate daytime activities are obtained by using open-circuit wearable devices for indirect calorimetry measurements and the doubly labeled water method respectively. Hundreds of E (in kcal/min) and VO2 (in L of O2/min) were previously reported for workers. The oxygen uptake factors of 0.2059 ± 0.0019 and 0.2057 ± 0.0018 L of O2/kcal during postprandial and fasting phases respectively enabled conversion of E into VO2. Equations determined in this study based upon more than 25 000 published measurements enable the calculation of 15 parameters in the same worker only by using the VO2 reflecting workload. These parameters, notably VE, VA, VE/VO2 VA/Q, Q, LBF and KBF were found to be interrelated. Altering one of these changes the order of magnitude of the others. Q, LBF and KBF decrease when supine adults at rest switch to an upright position. This effect of gravity diminished when VO2 increased. The fall in LBF and KBF during exertion might enhance muscle blood flow as reported previously. Taken together these equations and data may improve the accuracy of physiologically based toxicokinetic modeling as well as occupational health assessment studies in active workers exposed to xenobiotics.List of main abbreviations: AVOD: arterioveinous oxygen content difference.BMI: body mass index (in kg/m2).BSA: body surface area (in m2).BTPS: body temperature and saturated with water vapor.Bw: body weight (in kg).E: minute energy expenditure rate (in kcal/min).FGE: organ blood flow factor for the gravitational effect on blood circulation.H: oxygen uptake factor, volume of oxygen (at STPD) consumed to produce 1 kcal of energy expended.KBF: kidneys blood flow (in ml/min).LBF: liver blood flow (in ml/min).PBF: liver or kidneys blood flows expressed in terms of percentages (in %) of Qsup C values: namely PBF = (LBF or KBF/Qsup C) x 100.Q: cardiac output (in L/min or ml/min).Qsup C: cardiac output for the cohort of males or females in supination (in ml/min).STPD: standard temperature and pressure, dry air.sup: values measured when adults are in the supine position.up: values measured when adults are in the upright position.VDphys: physiological dead space at BTPS (in L).VT: tidal volume at BTPS (in L).VA: alveolar ventilation rate at BTPS (in L/min).VA/Q: ventilation-perfusion ratio (unitless).VE: minute ventilation rate at BTPS (in L/min).VO2: oxygen consumption rate (i.e. the oxygen uptake) at STPD (in L/min).VQ: ventilatory equivalent for VO2 (VE at BTPS /VO2 at STPD).


Subject(s)
Hemodynamics , Oxygen Consumption , Adult , Energy Metabolism , Female , Humans , Male , Oxygen , Respiratory Function Tests
3.
Environ Toxicol Pharmacol ; 88: 103737, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34481063

ABSTRACT

Climatic conditions raise new concerns about the potential impact of heat on the absorption and kinetics of certain chemicals. The impact of 3 temperatures (21, 25 and 30 °C WBGT) on the toxicokinetics of toluene and acetone was therefore evaluated in five human subjects during controlled exposures in an inhalation chamber. Biological samples were collected and analyzed by GC-MS/MS. Increases between 4 and 85 % were observed for solvents concentrations in blood (30 vs 21 °C) while decreases in urine samples for acetone and o-cresol were measured at the end of the exposure period (4 h). Mean blood concentrations at 4 h are well correlated with temperature. Results suggest an increased absorption and/or a decreased elimination of volatile chemicals in the presence of heat. Higher increases of blood chemical concentrations were observed in heavier individuals. Further studies should include physiologically based toxicokinetic models to help in better understanding the mechanisms involved and their respective contribution.


Subject(s)
Acetone/pharmacokinetics , Hot Temperature , Solvents/pharmacokinetics , Toluene/pharmacokinetics , Acetone/blood , Acetone/urine , Adult , Breath Tests , Humans , Inhalation Exposure , Male , Pilot Projects , Skin Absorption , Toluene/blood , Toluene/urine , Young Adult
4.
Can J Physiol Pharmacol ; 99(11): 1148-1158, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34062083

ABSTRACT

Physiological changes associated with thermoregulation can influence the kinetics of chemicals in the human body such as alveolar ventilation (VA) and redistribution of blood flow to organs. In this study, the influence of heat stress on various physiological parameters was evaluated in nine male volunteers during sessions of exposure to wet-bulb globe temperatures (WBGT) of 21, 25, and 30 °C for 4 h. Skin and core temperatures and more than 20 cardiopulmonary parameters were measured. Liver, kidneys, brain, skin, and muscles blood flows were also determined based on published measurements. Results show that most subjects (eight out of nine) have been affected by the inhalation of hot and dry air at the WBGT of 30 °C. High respiratory rates, superficial tidal volumes, and low VA values were notably observed. The skin blood flow increased by 2.16-fold, whereas the renal blood flow and liver blood flow decreased by about by 11% and 18%, respectively. A complete set of key cardiopulmonary parameters in healthy male adults before and during heat stress was generated for use in physiologically based pharmacokinetic modeling. A toxicokinetic studies are ongoing to evaluate the impact of heat stress on the absorption, biotransformation and excretion rates of volatile xenobiotics.


Subject(s)
Body Temperature Regulation/physiology , Body Temperature/physiology , Cardiovascular Physiological Phenomena , Heat-Shock Response/physiology , Posture/physiology , Regional Blood Flow/physiology , Respiratory Physiological Phenomena , Rest/physiology , Adult , Heart Function Tests , Hot Temperature , Humans , Kidney/blood supply , Liver/blood supply , Male , Respiratory Function Tests , Skin/blood supply , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...