Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Rep ; 14(1): 5898, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467724

ABSTRACT

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Female , Male , Animals , Mice , Humans , Hypothalamo-Hypophyseal System/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/metabolism , Transcriptome , Stress, Psychological/metabolism , Pituitary-Adrenal System/metabolism , Brain/diagnostic imaging , Brain/metabolism , Corticosterone
2.
Environ Int ; 178: 108103, 2023 08.
Article in English | MEDLINE | ID: mdl-37494814

ABSTRACT

There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.


Subject(s)
Flame Retardants , Hydrocarbons, Brominated , Male , Animals , Rats , Female , Pregnancy , Chromatography, Liquid , Rats, Wistar , Placenta/metabolism , Tandem Mass Spectrometry , Hydrocarbons, Brominated/toxicity , Hydrocarbons, Brominated/metabolism , Flame Retardants/toxicity , Flame Retardants/metabolism , Cerebellum/metabolism , Epigenesis, Genetic
3.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884490

ABSTRACT

The early-life microbiome (ELM) interacts with the psychosocial environment, in particular during early-life adversity (ELA), defining life-long health trajectories. The ELM also plays a significant role in the maturation of the immune system. We hypothesised that, in this context, the resilience of the oral microbiomes, despite being composed of diverse and distinct communities, allows them to retain an imprint of the early environment. Using 16S amplicon sequencing on the EpiPath cohort, we demonstrate that ELA leaves an imprint on both the salivary and buccal oral microbiome 24 years after exposure to adversity. Furthermore, the changes in both communities were associated with increased activation, maturation, and senescence of both innate and adaptive immune cells, although the interaction was partly dependent on prior herpesviridae exposure and current smoking. Our data suggest the presence of multiple links between ELA, Immunosenescence, and cytotoxicity that occur through long-term changes in the microbiome.


Subject(s)
Adverse Childhood Experiences/statistics & numerical data , Bacteria/classification , Immune System , Life Change Events , Microbiota , Mouth Mucosa/microbiology , Saliva/microbiology , Adult , Bacteria/genetics , Bacteria/isolation & purification , Case-Control Studies , Child , Cohort Studies , Female , Humans , Male , Young Adult
4.
Front Immunol ; 12: 674532, 2021.
Article in English | MEDLINE | ID: mdl-34394074

ABSTRACT

Early Life Adversity (ELA) is closely associated with the risk for developing diseases later in life, such as autoimmune diseases, type-2 diabetes and cardiovascular diseases. In humans, early parental separation, physical and sexual abuse or low social-economic status during childhood are known to have great impact on brain development, in the hormonal system and immune responses. Maternal deprivation (MD) is the closest animal model available to the human situation. This paradigm induces long lasting behavioral effects, causes changes in the HPA axis and affects the immune system. However, the mechanisms underlying changes in the immune response after ELA are still not fully understood. In this study we investigated how ELA changes the immune system, through an unbiased analysis, viSNE, and addressed specially the NK immune cell population and its functionality. We have demonstrated that maternal separation, in both humans and rats, significantly affects the sensitivity of the immune system in adulthood. Particularly, NK cells' profile and response to target cell lines are significantly changed after ELA. These immune cells in rats are not only less cytotoxic towards YAC-1 cells, but also show a clear increase in the expression of maturation markers after 3h of maternal separation. Similarly, individuals who suffered from ELA display significant changes in the cytotoxic profile of NK cells together with decreased degranulation capacity. These results suggest that one of the key mechanisms by which the immune system becomes impaired after ELA might be due to a shift on the senescent state of the cells, specifically NK cells. Elucidation of such a mechanism highlights the importance of ELA prevention and how NK targeted immunotherapy might help attenuating ELA consequences.


Subject(s)
Adverse Childhood Experiences , Growth and Development/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Stress, Psychological/immunology , Adaptive Immunity/immunology , Adaptive Immunity/physiology , Adult , Animals , Corticosterone/blood , Disease Models, Animal , Female , Glucose , Growth and Development/physiology , Humans , Male , Maternal Deprivation , Rats , Rats, Wistar
5.
J Clin Med ; 10(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067606

ABSTRACT

Asymptomatic individuals, called "silent spreaders" spread SARS-CoV-2 efficiently and have complicated control of the ongoing COVID-19 pandemic. As seen in previous influenza pandemics, socioeconomic and life-trajectory factors are important in disease progression and outcome. The demographics of the asymptomatic SARS-CoV-2 carriers are unknown. We used the CON-VINCE cohort of healthy, asymptomatic, and oligosymptomatic individuals that is statistically representative of the overall population of Luxembourg for age, gender, and residency to characterise this population. Gender (male), not smoking, and exposure to early-life or adult traumatic experiences increased the risk of IgA seropositivity, and the risk associated with early-life exposure was a dose-dependent metric, while some other known comorbidities of active COVID-19 do not impact it. As prior exposure to adversity is associated with negative psychobiological reactions to external stressors, we recorded psychological wellbeing during the study period. Exposure to traumatic events or concurrent autoimmune or rheumatic disease were associated with a worse evolution of anxiety and depressive symptoms throughout the lockdown period. The unique demographic profile of the "silent spreaders" highlights the role that the early-life period plays in determining our lifelong health trajectory and provides evidence that the developmental origins of health and disease is applicable to infectious diseases.

6.
Front Genet ; 12: 657171, 2021.
Article in English | MEDLINE | ID: mdl-34108991

ABSTRACT

DNA methylation is one of the most important epigenetic modifications and is closely related with several biological processes such as regulation of gene transcription and the development of non-malignant diseases. The prevailing dogma states that DNA methylation in eukaryotes occurs essentially through 5-methylcytosine (5mC) but recently adenine methylation was also found to be present in eukaryotes. In mouse embryonic stem cells, 6-methyladenine (6mA) was associated with the repression and silencing of genes, particularly in the X-chromosome, known to play an important role in cell fate determination. Here, we have demonstrated that 6mA is a ubiquitous eukaryotic epigenetic modification that is put in place during epigenetically sensitive periods such as embryogenesis and fetal development. In somatic cells there are clear tissue specificity in 6mA levels, with the highest 6mA levels being observed in the brain. In zebrafish, during the first 120 h of embryo development, from a single pluripotent cell to an almost fully formed individual, 6mA levels steadily increase. An identical pattern was observed over embryonic days 7-21 in the mouse. Furthermore, exposure to a neurotoxic environmental pollutant during the same early life period may led to a decrease in the levels of this modification in female rats. The identification of the periods during which 6mA epigenetic marks are put in place increases our understanding of this mammalian epigenetic modification, and raises the possibility that it may be associated with developmental processes.

7.
Dev Psychopathol ; 32(3): 853-863, 2020 08.
Article in English | MEDLINE | ID: mdl-31407649

ABSTRACT

Early life adversity (ELA) has been associated with inflammation and immunosenescence, as well as hyporeactivity of the HPA axis. Because the immune system and the HPA axis are tightly intertwined around the glucocorticoid receptor (GR), we examined peripheral GR functionality in the EpiPath cohort among participants who either had been exposed to ELA (separation from parents and/or institutionalization followed by adoption; n = 40) or had been reared by their biological parents (n = 72).Expression of the strict GR target genes FKBP5 and GILZ as well as total and 1F and 1H GR transcripts were similar between groups. Furthermore, there were no differences in GR sensitivity, examined by the effects of dexamethasone on IL6 production in LPS-stimulated whole blood. Although we did not find differences in methylation at the GR 1F exon or promoter region, we identified a region of the GR 1H promoter (CpG 1-9) that showed lower methylation levels in ELA.Our results suggest that peripheral GR signaling was unperturbed in our cohort and the observed immune phenotype does not appear to be secondary to an altered GR response to the perturbed HPA axis and glucocorticoid (GC) profile, although we are limited in our measures of GR activity and time points.


Subject(s)
Hypothalamo-Hypophyseal System , Receptors, Glucocorticoid , DNA Methylation , Humans , Hypothalamo-Hypophyseal System/metabolism , Leukocytes/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
8.
Front Immunol ; 8: 1263, 2017.
Article in English | MEDLINE | ID: mdl-29089944

ABSTRACT

Early life adversity (ELA) increases the risk for multiple age-related diseases, such as diabetes type 2 and cardiovascular disease. As prevalence is high, ELA poses a major and global public health problem. Immunosenescence, or aging of the immune system, has been proposed to underlie the association between ELA and long-term health consequences. However, it is unclear what drives ELA-associated immunosenescence and which cells are primarily affected. We investigated different biomarkers of immunosenescence in a healthy subset of the EpiPath cohort. Participants were either parent-reared (Ctrl, n = 59) or had experienced separation from their parents in early childhood and were subsequently adopted (ELA, n = 18). No difference was observed in telomere length or in methylation levels of age-related CpGs in whole blood, containing a heterogeneous mixture of immune cells. However, when specifically investigating T cells, we found a higher expression of senescence markers (CD57) in ELA. In addition, senescent T cells (CD57+) in ELA had an increased cytolytic potential compared to senescent cells in controls. With a mediation analysis we demonstrated that cytomegalovirus (CMV) infection, which is an important driving force of immunosenescence, largely accounted for elevated CD57 expression observed in ELA. Leukocyte telomere length may obscure cell-specific immunosenescence; here, we demonstrated that the use of cell surface markers of senescence can be more informative. Our data suggest that ELA may increase the risk of CMV infection in early childhood, thereby mediating the effect of ELA on T cell-specific immunosenescence. Thus, future studies should include CMV as a confounder or selectively investigate CMV seronegative cohorts.

9.
J Immunol ; 199(12): 4046-4055, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29133294

ABSTRACT

Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA (n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69+CD8+ T cells (p = 0.022), increased numbers of HLA-DR+ CD4 and HLA-DR+ CD8 T cells (p < 0.001), as well as increased numbers of CD25+CD8+ T cells (p = 0.036). ELA also showed a trend toward higher numbers of CCR4+CXCR3-CCR6+ CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells.


Subject(s)
Child, Adopted , Inflammation/etiology , Life Change Events , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Case-Control Studies , Cellular Senescence , Child, Institutionalized , Exercise , Female , Health Behavior , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/immunology , Immunophenotyping , Inflammation/immunology , Interleukin-6/blood , Luxembourg , Lymphocyte Activation , Lymphocyte Count , Male , Obesity/epidemiology , Smoking/epidemiology , Stress, Psychological/epidemiology , Stress, Psychological/immunology , Telomere Homeostasis/immunology , Young Adult
10.
Genomics ; 107(4): 109-19, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26945642

ABSTRACT

Current restriction enzyme based reduced representation methylation analyses aim for limited, but unbiased, methylome coverage. As the current best estimate suggests that only ~20% of CpGs are dynamically regulated, we characterised the CpG and genomic context surrounding all suitable restriction enzyme sites to identify those that were located in regions rich in dynamically methylated CpGs. The restriction-site distributions for MspI, BstUI, and HhaI were non-random. CpGs in CGI and shelf+shore could be enriched, particularly in gene bodies for all genomic regions, promoters (TSS1500, TSS200), intra- (1st exon, gene body, 3'UTR, 5'UTR) and inter-genic regions. HpyCH4IV enriched CpG elements in the open sea for all genomic elements. Judicious restriction enzyme choice improves the focus of reduced representation approaches by avoiding the monopolization of read coverage by genomic regions that are irrelevant, unwanted or difficult to map, and only sequencing the most informative fraction of CpGs.


Subject(s)
CpG Islands , DNA Methylation , DNA Restriction Enzymes/chemistry , Sequence Analysis, DNA/methods , 3' Untranslated Regions , 5' Untranslated Regions , Animals , Gene Library , Genomics/methods , Mice , Promoter Regions, Genetic
11.
Elife ; 52016 Feb 26.
Article in English | MEDLINE | ID: mdl-26919175

ABSTRACT

Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Muscle Proteins/biosynthesis , Transcription Factors/biosynthesis , Tumor Suppressor Proteins/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis , Animals , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Muscles/pathology , Tripartite Motif Proteins , Tumor Suppressor Protein p53/biosynthesis , Up-Regulation
12.
Clin Epigenetics ; 8: 12, 2016.
Article in English | MEDLINE | ID: mdl-26823689

ABSTRACT

BACKGROUND: Gender, genetic makeup, and prior experience interact to determine physiological responses to an external perceived stressor. Here, we investigated the contribution of both genetic variants and promoter methylation of the NR3C1 (glucocorticoid receptor) gene to the cardiovascular and hypothalamus-pituitary-adrenal (HPA) axis response to the socially evaluated cold pressor test (seCPT). RESULTS: Two hundred thirty-two healthy participants were recruited and underwent the experiment. They were randomly assigned to either the seCPT group (cold water) or a control group (warm water). The seCPT group had a clear stress reaction; salivary cortisol levels and peak systolic and diastolic blood pressure all increased significantly compared to the control group. GR genotype (TthIIII, NR3C1-I, 1H, E22E, R23K, BclI and 9beta) and methylation data were obtained from 218 participants. Haplotypes were built from the GR genotypes, and haplotype 2 (minor allele of BclI) carriers had a higher cortisol response to the seCPT in comparison to non-carriers (20.77 ± 13.22; 14.99 ± 8.42; p = 0.034), as well as independently of the experimental manipulation, higher baseline heart rate (72.44 ± 10.99; 68.74 ± 9.79; p = 0.022) and blood pressure (115.81 ± 10.47; 111.61 ± 10.74; p = 0.048). Average methylation levels throughout promoter 1F and 1H were low (2.76 and 1.69 %, respectively), but there was a strong correlation between individual CpGs and the distance separating them (Pearson's correlation r = 0.725, p = 3.03 × 10(-26)). Higher promoter-wide methylation levels were associated with decreased baseline blood pressure, and when incorporated into a linear mixed effect model significantly predicted lower systolic and diastolic blood pressure evolution over time in response to the experimental manipulation. The underlying genotype significantly predicted methylation levels; particularly, the homozygous BclI minor allele was associated with higher methylation in promoter 1H (p = 0.042). CONCLUSIONS: This is one of the first studies linking epigenetic modifications of the GR promoter, receptor genotype and physiological measures of the stress response. At baseline, there were clear genetic and epigenetic effects on blood pressure. The seCPT induced a strong cardiovascular and HPA axis response, and both systems were affected by the functional genetic variants, although methylation also predicted blood pressure reactivity. The return to baseline was predominantly influenced by the genomic sequence. Overall, the physiological response to the seCPT is controlled by an exquisite mix of genetic and epigenetic factors.


Subject(s)
Blood Pressure/physiology , DNA Methylation , Hydrocortisone/analysis , Promoter Regions, Genetic/genetics , Receptors, Glucocorticoid/genetics , Saliva/chemistry , Stress, Psychological/genetics , Blood Pressure/genetics , Female , Genetic Variation/genetics , Genetic Variation/physiology , Genotype , Haplotypes/genetics , Humans , Hydrocortisone/physiology , Male , Receptors, Glucocorticoid/physiology , Stress, Psychological/physiopathology , Young Adult
13.
J Psychiatr Res ; 47(11): 1597-607, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23948638

ABSTRACT

Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRß expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain.


Subject(s)
Brain/metabolism , Dinucleoside Phosphates/genetics , Gene Expression/physiology , Promoter Regions, Genetic/physiology , Receptors, Glucocorticoid/metabolism , Adult , Analysis of Variance , Brain/anatomy & histology , Female , Humans , Male , Middle Aged , Postmortem Changes , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Young Adult
14.
Epigenetics ; 7(11): 1290-301, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23023726

ABSTRACT

Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.


Subject(s)
Epigenesis, Genetic , Promoter Regions, Genetic/genetics , Receptors, Glucocorticoid/genetics , Animals , Corticosterone/metabolism , CpG Islands , DNA Methylation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Male , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Stress, Psychological
15.
Cold Spring Harb Perspect Biol ; 2(5): a001032, 2010 May.
Article in English | MEDLINE | ID: mdl-20452958

ABSTRACT

The p53 tumor suppressor pathway is central both in reducing cancer frequency in vertebrates and in mediating the response of commonly used cancer therapies. This article aims to summarize and discuss a large body of evidence suggesting that the p53 pathway harbors functional inherited single-nucleotide polymorphisms (SNPs) that affect p53 signaling in cells, resulting in differences in cancer risk and clinical outcome in humans. The insights gained through these studies into how the functional p53 pathway SNPs could help in the tailoring of cancer therapies to the individual are discussed. Moreover, recent work is discussed that suggests that many more functional p53 pathway SNPs are yet to be fully characterized and that a thorough analysis of the functional human genetics of this important tumor suppressor pathway is required.


Subject(s)
Polymorphism, Single Nucleotide , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Humans , Proto-Oncogene Proteins c-mdm2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...