ABSTRACT
In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.
Subject(s)
COVID-19 , Chitosan , Escherichia coli Infections , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Candida albicans , Chitosan/pharmacology , Escherichia coli , Humans , Lasers , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2 , Staphylococcus aureusABSTRACT
Controlling the structural organization and crystallinity of functional oxides is key to enhancing their performance in technological applications. In this work, we report a strong enhancement of the structural organization and crystallinity of Bi2WO6 samples synthetized by a microwave-assisted hydrothermal method after exposing them to femtosecond laser irradiation. X-ray diffraction, UV-vis and Raman spectroscopies, photoluminescence emissions, energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy were employed to characterize the as-synthetized samples. To complement and rationalize the experimental results, first-principles calculations were employed to study the effects of femtosecond laser irradiation. Structural and electronic effects induced by femtosecond laser irradiation enhance the long-range crystallinity while decreasing the free carrier density, as it takes place in the amorphous and liquid states. These effects can be considered a clear cut case of surface-enhanced Raman scattering.
ABSTRACT
In nanotechnology research, significant effort is devoted to fabricating patterns of metallic nanoparticles on the surfaces of different semiconductors to find innovative materials with favorable characteristics, such as antimicrobial and photocatalytic properties, for novel applications. We present experimental and computational progress, involving a combined approach, on the antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) of as-synthesized α-Ag2WO4 samples and Ag nanoparticle composites (Ag NPs)/α-Ag2WO4. The former included two morphologies: hexagonal rod-like (α-Ag2WO4-R) and cuboid-like (α-Ag2WO4-C), and the latter included composites formed under electron beam, Ag NPs/α-Ag2WO4-RE and Ag NPs/α-Ag2WO4-CE, and femtosecond (fs) laser irradiation, Ag NPs/α-Ag2WO4-RL and Ag NPs/α-Ag2WO4-CL. Direct observations of the arrangement of Ag NPs on the Ag NPs/α-Ag2WO4 composites irradiated with an electron beam and laser, through transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, and field-emission scanning electron microscopy, allow us to investigate the surface morphology, chemical composition, homogeneity, and crystallinity. Therefore, these experimental factors, and in particular, the facet-dependent response of Ag NPs/α-Ag2WO4 composites were discussed and analyzed from the perspective provided by the results obtained by first-principles calculations. On this basis, α-Ag2WO4-R material proved to be a better bactericidal agent than α-Ag2WO4-C with minimum bactericidal concentration (MBC) values of 128 and 256 µg/mL, respectively. However, the Ag NPs/α-Ag2WO4-CL composite is the most efficient bactericidal agent of all tested samples (MBC = 4 µg/mL). This superior performance can be attributed to the cooperative effects of crystal facets and defect engineering. These results on the synthesis and stability of the Ag NPs/α-Ag2WO4 composites can be used for the development of highly efficient bactericidal agents for use in environmental remediation and the potential extension of methods to produce materials with catalytic applications.
ABSTRACT
In the current communication, the synthesis of metallic Bi nanoparticles with coexisting crystallographic structures (rhombohedral, monoclinic, and cubic) obtained via direct femtosecond laser irradiation of NaBiO3 is demonstrated for the first time. By exploring the use of high laser power values, it is revealed that the promoted laser-mediated reactions lead to the synthesis of coexisting phases in metal nanoparticles, which may be a widely occurring phenomenon in other materials under femtosecond laser irradiation, and a fundamental concern for laser-based nanofabrication.
ABSTRACT
In recent years, complex nanocomposites formed by Ag nanoparticles coupled to an α-Ag2WO4 semiconductor network have emerged as promising bactericides, where the semiconductor attracts bacterial agents and Ag nanoparticles neutralize them. However, the production rate of such materials has been limited to transmission electron microscope processing, making it difficult to cross the barrier from basic research to real applications. The interaction between pulsed laser radiation and α-Ag2WO4 has revealed a new processing alternative to scale up the production of the nanocomposite resulting in a 32-fold improvement of bactericidal performance, and at the same time obtaining a new class of spherical AgxWyOz nanoparticles.
Subject(s)
Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Lasers , Light , Microscopy, Electron, Transmission/methods , Nanocomposites/chemistryABSTRACT
Bimetallic nanoalloys with a wide variety of structures and compositions have been fabricated through many diverse techniques. Generally, various steps and chemicals are involved in their fabrication. In this study, the synthesis of Ag-Bi nanoalloys by femtosecond laser irradiation of an inorganic oxide Ag2WO4/NaBiO3 target without any chemicals like reducing agents or solvent is presented. The interaction between these materials and the ultrashort pulse of light allows the migration of Ag and Bi atoms from the crystal lattice to the particles surfaces and then to the plasma plume, where the reduction of the positively charged Ag and Bi species in their respective metallic species takes place. Subsequently, the controlled nucleation and growth of the Ag-Bi alloyed nanoparticles occurs in situ during the irradiation process in air. Although at the bulk level, these elements are highly immiscible, it was experimentally demonstrated that at nanoscale, the Ag-Bi nanoalloy can assume a randomly mixed structure with up to 6 ± 1 atom % of Bi solubilized into the face-centered cubic structure of Ag. Furthermore, the Ag-Bi binary system possesses high antibacterial activity against Staphylococcus aureus (methicillin-resistant and methicilin-susceptible), which is interesting for potential antimicrobial applications, consequently increasing their range of applicability. The present results provide potential insights into the structures formed by the Ag-Bi systems at the nanoscale and reveal a new processing method where complex inorganic oxides can be used as precursors for the controlled synthesis of alloyed bimetallic nanoparticles.