Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Sci Total Environ ; 912: 169015, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040369

ABSTRACT

In situ burning of marine oil spills reduces the total amount of oil in the environment, but a negative side effect may be the generation of environmentally hazardous polycyclic aromatic hydrocarbons (PAHs) that may pose a risk for bioaccumulation, particularly in organisms having a high lipid content. In this study uptake of PAHs from oil and burn residue were examined in the high arctic copepod Calanus hyperboreus. A major part of the low ring number petrogenic PAHs in the oil was removed during burning and relative higher concentrations of pyrogenic high ring number PAHs was found in the burn residue. This suggests that burning markedly reduces the general PAH exposure load. Furthermore, the pyrogenic PAHs generated during the burn were not bioconcentrated to quantifiable levels in the copepods. We conclude that in situ burning can mitigate the potential risk of PAH uptake for copepods and other pelagic organisms in the marine environment as the pyrogenic PAHs only pose low risk for uptake from the water by the copepods and other pelagic organisms.


Subject(s)
Copepoda , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Petroleum/analysis
2.
Nat Commun ; 13(1): 7660, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496498

ABSTRACT

The Northeast Greenland shelf (NEGS) is a recipient of Polar Water (PW) from the Arctic Ocean, Greenland Ice Sheet melt, and Atlantic Water (AW). Here, we compile hydrographical measurements to quantify long-term changes in fjords and coastal waters. We find a profound change in the vertical distribution of water masses, with AW shoaling >60 m and PW thinning >50 m since early 2000's. The properties of these waters have also changed. AW is now 1 °C warmer and the salinity of surface waters and PW are 1.8 and 0.68 lower, respectively. The AW changes have substantially weakened stratification south of ~74°N, indicating increased accessibility of heat and potentially nutrients associated with AW. The Atlantification earlier reported for the eastern Fram Strait and Barents Sea region has also propagated to the NEGS. The increased presence of AW, is an important driver for regional change leading to a likely shift in ecosystem structure and function.


Subject(s)
Ecosystem , Water , Arctic Regions , Ice Cover , Salinity , Greenland
3.
Indoor Air ; 31(4): 1252-1266, 2021 07.
Article in English | MEDLINE | ID: mdl-33506563

ABSTRACT

This project investigated fungal growth conditions in artificially contaminated interfaces between solid masonry and adhesive mortar for internal insulation. The project comprised several laboratory experiments: test of three fungal decontamination methods; investigation of development of fungal growth in solid masonry walls fitted with five internal insulation systems; and investigation of volatile organic compounds (VOC) diffusion through materials and whole insulation systems. One aim was to examine whether the alkaline environment (pH > 9) in the adhesive mortars could prevent fungal growth despite the water activity (aw ) in the interface exceeds the level (aw  > 0.75) commonly considered critical for fungal growth. The findings indicate that do-it-yourself decontamination solutions were inadequate for removal of fungal growth, while professional solutions were successful. However, the choice of decontamination method was of minor importance in the case of application of internal insulation with high pH adhesive mortar, as the high pH adhesive mortars were found to inactivate existing growth and prevented spore germination during the experimental period. The three tested VOCs were capable of diffusing through most of the examined products and could potentially affect the indoor air quality.


Subject(s)
Air Pollution, Indoor , Air Pollution, Indoor/analysis , Fungi , Hydrogen-Ion Concentration , Laboratories , Water
4.
J Pharm Sci ; 108(3): 1117-1129, 2019 03.
Article in English | MEDLINE | ID: mdl-30773199

ABSTRACT

The analysis of subvisible particles is currently challenging but pivotal to the understanding and control of the quality of protein therapeutics. While a range of characterization methods is available for subvisible particles, information on the protein conformation in a particle-considered a possible parameter in eliciting unwanted immunogenicity of protein therapeutics-is especially challenging in the lower micrometer range using existing analytical technologies. Using 6 different protein particle populations, we show that transmission Fourier transform infrared (FTIR) microscopy can determine protein secondary structure in single particles down to 10 µm. The analytical setup presented here is able to immobilize protein particles and obtain transmission FTIR spectra on individual protein particles in their intact aqueous environment. Spectra of dried particles, on the other hand, were found to occasionally differ from spectra of particles in aqueous environment. In summary, using the analytical setup described in this study, transmission FTIR microscopy uniquely provides information on single protein particles in particle populations in their aqueous environment without interference from the background protein solution.


Subject(s)
Drug Compounding/standards , Insulin/chemistry , Microscopy/methods , Quality Control , Chemistry, Pharmaceutical , Feasibility Studies , Particle Size , Protein Aggregates , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry
5.
Ecotoxicology ; 28(1): 26-36, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30460435

ABSTRACT

Arctic shipping and oil exploration are expected to increase, as sea ice extent is reduced. This enhances the risk for accidental oil spills throughout the Arctic, which emphasises the need to quantify potential consequences to the marine ecosystem and to evaluate risk and choose appropriate remediation methods. This study investigated the sensitivity of Arctic marine plankton to the water accommodated fraction (WAF) of heavy fuel oil. Arctic marine phytoplankton and copepods (Calanus finmarchicus) were exposed to three WAF concentrations corresponding to total hydrocarbon contents of 0.07 mg l-1, 0.28 mg l-1 and 0.55 mg l-1. Additionally, the potential phototoxic effects of exposing the WAF to sunlight, including the UV spectrum, were tested. The study determined sub-lethal effects of WAF exposure on rates of key ecosystem processes: primary production of phytoplankton and grazing (faecal pellet production) of copepods. Both phytoplankton and copepods responded negatively to WAF exposure. Biomass specific primary production was reduced by 6, 52 and 73% and faecal pellet production by 18, 51 and 86% with increasing WAF concentrations compared to controls. The phototoxic effect reduced primary production in the two highest WAF concentration treatments by 71 and 91%, respectively. This experiment contributes to the limited knowledge of acute sub-lethal effects of potential oil spills to the Arctic pelagic food web.


Subject(s)
Petroleum Pollution/adverse effects , Phytoplankton/drug effects , Water Pollutants, Chemical/adverse effects , Zooplankton/drug effects , Animals , Arctic Regions , Copepoda/drug effects , Copepoda/physiology , Feces/chemistry , Food Chain , Photosynthesis/drug effects , Phytoplankton/physiology , Zooplankton/physiology
6.
J Pharm Sci ; 107(7): 1842-1851, 2018 07.
Article in English | MEDLINE | ID: mdl-29574228

ABSTRACT

Regulatory authorities and scientific communities are increasingly attentive to the known and universal presence of small particulates in biological drug products. The underlying concern is that these particulates may cause unwanted formation of antidrug antibodies in patients. Pharmacological studies, however, have to date not succeeded in unambiguously identifying risk-prone particle properties. This lack of success may be partly due to a lack of available, well-defined, homogenous particle material. Protein particles arising from stress of protein drug products are by nature often highly heterogeneous in size, morphology, and structure of the constituent protein in the particles. Here, we present simple and pharmaceutically relevant stress conditions to produce 8 different highly homogenous micrometer-sized protein particles from human insulin, representing very different morphologies and conformation of the constituent protein molecules in the particles generated. Insulin's self-association patterns were varied by formulation approaches to create diverse starting materials. The resulting collection of homogenous particles underlines that the particle formation is not necessarily a random process but a consequence of formulation and specific stress condition. Owing to the inherent homogenicity of these populations, the particle materials can act as a standard platform for further studies on insulin subvisible particles in drug products.


Subject(s)
Hypoglycemic Agents/chemistry , Insulin/chemistry , Drug Compounding , Freezing , Hot Temperature , Humans , Models, Molecular , Particle Size , Protein Aggregates , Protein Conformation , Protein Stability , Rotation
7.
Aquat Toxicol ; 195: 8-14, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29220691

ABSTRACT

Oil and gas exploration in the Arctic will increase the risk for accidental oil spills and thereby have a potential impact on the ecosystem and the organisms inhabiting these areas. Lipid rich copepods are an important food source for higher trophic levels in Arctic marine ecosystems. However, high lipid content and a slower metabolism increase the risk for bioaccumulation in Arctic species. Here we exposed three late development stages of the lipid rich high-Arctic copepod species Calanus hyperboreus to two different 14C-marked crude oil model compounds, the alkane dodecane (log Kow 6.10) and the polycyclic aromatic hydrocarbon (PAH) phenanthrene (log Kow 4.46) on a short-term scale of 4days. Exposure was followed by a depuration phase of 3days. We observed a difference in estimated bioaccumulation of the two model compounds between stages and found a slower depuration of dodecane than of phenanthrene in the two largest and most lipid rich stages. However, depuration of dodecane and phenanthrene was non-significant for all three stages. The results indicate that even short-term exposure may result in long-term bioaccumulation and internal exposure of oil compounds in the lipid rich high-Arctic copepods C. hyperboreus. Slow elimination and depuration of oil components indicate a risk for transfer of oil component up the food web to pelagic fish, seabirds and baleen whales.


Subject(s)
Copepoda/metabolism , Petroleum/metabolism , Alkanes/analysis , Animals , Arctic Regions , Petroleum Pollution , Phenanthrenes/analysis , Water Pollutants, Chemical/toxicity
8.
ACS Biomater Sci Eng ; 3(5): 767-775, 2017 May 08.
Article in English | MEDLINE | ID: mdl-33440504

ABSTRACT

The performance of biomaterials largely depends on the materials biocompatibility, which is directly related to unwanted side effects like foreign body responses and inflammation, and the potential of interaction of cells with its surface, for example, cell adhesion. In the distinct application of catheters, low or even no cell adhesion is eligible. To influence the properties of existing and commonly used biomaterials and to further increase their biocompatibility, a coating with a recombinantly produced spider silk protein as outer layer was applied on three selected catheter polymers (polyurethane, polytetrafluoroethylene, silicone) and evaluated based on cell adhesion. The tested cell types, HaCaT keratinocytes (epidermal cells), B50 neuronal cells, C2C12 myoblasts (muscle cells) and BALB/3T3 fibroblasts (connective tissue), exhibited low or no adhesion on the silk-coated materials. In combination with the lack of toxicity, the good biocompatibility, and the low body response, it could be shown that silk coatings have a high potential as a biomedical coating material, e.g., for catheters.

9.
EBioMedicine ; 6: 114-125, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27211554

ABSTRACT

Development of a dysregulated immune response discriminates sepsis from uncomplicated infection. Currently used biomarkers fail to describe simultaneously occurring pro- and anti-inflammatory responses potentially amenable to therapy. Marker candidates were screened by microarray and, after transfer to a platform allowing point-of-care testing, validated in a confirmation set of 246 medical and surgical patients. We identified up-regulated pathways reflecting innate effector mechanisms, while down-regulated pathways related to adaptive lymphocyte functions. A panel of markers composed of three up- (Toll-like receptor 5; Protectin; Clusterin) and 4 down-regulated transcripts (Fibrinogen-like 2; Interleukin-7 receptor; Major histocompatibility complex class II, DP alpha1; Carboxypeptidase, vitellogenic-like) described the magnitude of immune alterations. The created gene expression score was significantly greater in patients with definite as well as with possible/probable infection than with no infection (median (Q25/Q75): 80 (60/101)) and 81 (58/97 vs. 49 (27/66), AUC-ROC=0.812 (95%-CI 0.755-0.869), p<0.0001). Down-regulated lymphocyte markers were associated with prognosis with good sensitivity but limited specificity. Quantifying systemic inflammation by assessment of both pro- and anti-inflammatory innate and adaptive immune responses provides a novel option to identify patients-at-risk and may facilitate immune interventions in sepsis.


Subject(s)
Gene Expression Profiling/methods , Genetic Markers/immunology , Oligonucleotide Array Sequence Analysis/methods , Sepsis/diagnosis , Adaptive Immunity , Gene Expression Regulation , Humans , Immunity, Innate , Point-of-Care Systems , Prognosis , Prospective Studies , Sensitivity and Specificity , Sepsis/genetics , Sepsis/immunology
10.
Eur J Pharm Sci ; 81: 103-12, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478185

ABSTRACT

Widely accepted in vitro methodologies for sustained release parenteral drug formulations remain to be established. Hydrogels have been proposed as a release matrix more closely resembling the in vivo conditions for formulations intended for subcutaneous administration. The perspective of the current work was to investigate the feasibility of developing UV imaging-based in vitro methods enabling visualization and characterization of drug release and transport of protein therapeutics intended for subcutaneous administration. Specifically, the objectives were to prepare lipid implants providing sustained release of the model protein insulin and investigate the release into 0.5% (w/v) agarose hydrogels, pH7.40, using UV imaging- and a gel sampling-based release testing method. These results were compared to insulin release into well agitated buffer solution. Irrespective of the applied in vitro release method, the insulin release from Sterotex implants with a drug load of 20% (w/w) was faster as compared to the release from implants with a load of 10% (w/w), most likely due to the higher porosity of the implants with increasing drug load. Insulin release from 10% (w/w) implants into agitated solution was faster as compared to release into agarose hydrogel. This was ascribed to the additional mass transfer resistance provided by the agarose hydrogel. Interestingly, the release profiles of insulin from implants with an initial drug load of 20% (w/w) obtained by the three in vitro methods were relatively similar. The gel-based methods, in particular UV imaging, enable monitoring local drug concentrations in the vicinity of the implant over time thereby facilitating assessment of, e.g., sink conditions. The study highlights that the selection of the in vitro release method should take into account various factors including mass transport, drug stability, data analysis and simplicity of the methodology.


Subject(s)
Drug Implants , Hydrogels/chemistry , Insulin/chemistry , Delayed-Action Preparations/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Lipids/chemistry , Models, Theoretical , Solutions , Subcutaneous Tissue/chemistry
11.
J Biomed Mater Res B Appl Biomater ; 104(2): 402-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25892578

ABSTRACT

Materials for the next generation of medical devices will require not only the mechanical stability of current devices, but must also possess other properties such as sustained release of drugs in a controlled manner over a prolonged period of time. This work focuses on creating such a sophisticated material by forming an interpenetrating polymer network (IPN) material through modification of silicone elastomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel. IPN materials with a PHEMA content in the range of 13%-38% (w/w) were synthesized by using carbon dioxide-based solvent mixtures under high pressure. These IPNs were characterized with regard to microstructure as well as ability of the hydrogel to form a surface-connected hydrophilic carrier network inside the silicone. A critical limit for hydrogel connectivity was found both via simulation and by visualization of water uptake in approximately 25% (w/w) PHEMA, indicating that entrapment of gel occurs at low gel concentrations. The optimized IPN material was loaded with the antibiotic ciprofloxacin, and the resulting drug release was shown to inhibit bacterial growth when placed on agar, thus demonstrating the potential of this IPN material for future applications in drug-releasing medical devices.


Subject(s)
Ciprofloxacin , Drug Implants , Hydrogels/chemistry , Polyhydroxyethyl Methacrylate/chemistry , Silicones/chemistry , Animals , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/pharmacology , Drug Implants/chemistry , Drug Implants/pharmacology , HeLa Cells , Humans , Mice , NIH 3T3 Cells
12.
Aquat Toxicol ; 167: 1-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253790

ABSTRACT

Due to high lipid content and a slow metabolism, there is a higher risk of bioaccumulation of oil compounds in Arctic than in temperate copepods. There is also a concern that the bioavailability of oil compounds is higher when oil is dispersed with dispersants. The purpose of this project was to increase the knowledge on how the use of dispersants on an oil spill may affect the passive uptake of PAHs in resting high arctic copepods using Calanus hyperboreus as a model organism. To evaluate this, resting high arctic C. hyperboreus were caught in Disko Bay at>250 meters depth, November 2013, and subsequent experimental work was initiated immediately after, at nearby Arctic Station at Disko Island Western Greenland. C. hyperboreus females were incubated in phenanthrene (111, 50 and 10 nM), pyrene (57, 28 and 6 nM) and benzo(a) pyrene (10, 5 and 1 nM) for three days in treatments with and without oil (corn oil) and dispersant (AGMA DR372). After exposure, the highest measured concentrations of respectively phenanthrene, pyrene and benzo(a) pyrene in the copepods were 129, 30 and 6 nmol PAH g female(-1). Results showed that with addition of oil and dispersant to the water, the accumulation of PAH was significantly reduced, due to the deposition of the PAHs in the oil phase, decreasing the available PAHs for copepod uptake. While PAH metabolites and a depuration of the PAHs were observed, the copepods still contained PAHs after 77 days of incubation in clean seawater. Differences of treatments with and without oil and dispersant on the egg production were not statistically conclusive, although it is the most likely an effect of the highly variable day-to-day egg production between individual copepods. Equally, although there was an indication that the addition of dispersant and oil increased the mortality rate, there was no statistical difference.


Subject(s)
Copepoda/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Copepoda/metabolism , Ecotoxicology , Female , Greenland , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/metabolism , Reproduction/drug effects , Seawater/chemistry , Water Pollutants, Chemical/metabolism
13.
Sci Rep ; 5: 11240, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26062783

ABSTRACT

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.


Subject(s)
Eutrophication/physiology , Phytoplankton/growth & development , Indian Ocean , Seasons , Seawater/chemistry , Weather
14.
Mar Drugs ; 13(6): 3809-35, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26087022

ABSTRACT

Diatoms of the genus Pseudo-nitzschia produce domoic acid (DA), a toxin that is vectored in the marine food web, thus causing serious problems for marine organisms and humans. In spite of this, knowledge of interactions between grazing zooplankton and diatoms is restricted. In this study, we examined the interactions between Calanus copepodites and toxin producing Pseudo-nitzschia. The copepodites were fed with different concentrations of toxic P. seriata and a strain of P. obtusa that previously was tested to be non-toxic. The ingestion rates did not differ among the diets (P. seriata, P. obtusa, a mixture of both species), and they accumulated 6%-16% of ingested DA (up to 420 µg per dry weight copepodite). When P. seriata was exposed to the copepodites, either through physical contact with the grazers or separated by a membrane, the toxicity of P. seriata increased (up to 3300%) suggesting the response to be chemically mediated. The induced response was also triggered when copepodites grazed on another diatom, supporting the hypothesis that the cues originate from the copepodite. Neither pH nor nutrient concentrations explained the induced DA production. Unexpectedly, P. obtusa also produced DA when exposed to grazing copepodites, thus representing the second reported toxic polar diatom.


Subject(s)
Copepoda/physiology , Diatoms/physiology , Kainic Acid/analogs & derivatives , Marine Toxins/toxicity , Animals , Food Chain , Hydrogen-Ion Concentration , Kainic Acid/toxicity
15.
Eur J Pharm Sci ; 69: 26-36, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25576795

ABSTRACT

For parenteral biopharmaceuticals, subcutaneous diffusion and, in the case of solid implants or suspensions, dissolution may govern the clinical profile of the drug product. Insight into the dissolution and diffusion processes of biopharmaceuticals after parenteral administration is fundamental in the development of new protein drug formulations. Using insulin as a model compound, the aim of this work was to develop a UV imaging-based method to study the real-time dissolution and diffusion behavior of solid protein drugs under stagnant conditions in a hydrogel matrix mimicking the subcutaneous tissue. Dissolution of proteins and peptides is a complex phenomenon as it may be coupled to the complicated acid base properties of these substances. UV imaging allowed the real-time dissolution and diffusion processes of insulin at different pH values and of different insulins to be studied. Dissolution rates were obtained, and the quantitative performance of the developed UV imaging method was verified. It was shown that the UV imaging dissolution method was able to differentiate between the behavior of different insulins and that human insulin dissolution was highly dependent on pH. pH effects in the microenvironment of the human insulin compacts at pH 7.40 and 3.00 were observed by UV-Vis imaging, explaining the different dissolution kinetics of human insulin at pH 7.40 and 3.00 as compared to pH 5.40. In conclusion, UV-Vis imaging may be a useful tool for studying dissolution, diffusion and pH effects in the vicinity of solid protein drug in a hydrogel matrix with the aim of achieving a better understanding of in vivo dissolution processes.


Subject(s)
Hydrogels/chemistry , Insulin/chemistry , Protamines/chemistry , Animals , Cattle , Humans , Hydrogen-Ion Concentration , Powder Diffraction , Solubility , Spectrophotometry, Ultraviolet , Thermogravimetry , X-Ray Diffraction
16.
Aquat Toxicol ; 159: 52-61, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25521565

ABSTRACT

The toxic diatom Pseudo-nitzschia seriata was exposed directly and indirectly (separated by a membrane) to copepods, Calanus hyperboreus and C. finmarchicus, to evaluate the effects of the copepods on domoic acid production and chain formation in P. seriata. The toxicity of P. seriata increased in the presence of the copepods. This response was chemically mediated without physical contact between the organisms suggesting that it was induced by potential waterborne cues from the copepods or changes in water chemistry. Domoic acid production may be related to defense against grazing in P. seriata although it was not shown in the present study. To evaluate if the induction of domoic acid production was mediated by the chemical cues from damaged P. seriata cells, live P. seriata cells were exposed to a P. seriata cell homogenate, but no effect was observed. Chain formation in P. seriata was affected only when in direct contact with the copepods. This study suggests that the presence of zooplankton may be one of the factors affecting the toxicity of Pseudo-nitzschia blooms in the field.


Subject(s)
Copepoda/physiology , Diatoms/physiology , Kainic Acid/analogs & derivatives , Animals , Ecosystem , Kainic Acid/metabolism
17.
Endocrinology ; 155(7): 2602-12, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24708242

ABSTRACT

Emerging evidence suggest sex-specific regulation of dopamine neurons may underlie susceptibility of males to disorders such as Parkinson's disease (PD). In healthy male dopamine neurons, the Y-chromosome gene product, the sex-determining region on the Y chromosome (SRY) modulates dopamine biosynthesis and motor function. We investigated the regulation and function of SRY in a model of dopamine cell injury. Treatment with the dopaminergic toxin, 6-hydroxydopamine (6-OHDA), significantly elevated SRY mRNA expression (9-fold) in human male dopamine M17 cells. SRY up-regulation occurred via the p-quinone pathway, associated with a 3.5-fold increase in expression of GADD45γ, a DNA damage inducible factor gene and known SRY regulator. In turn, a signaling cascade involving GADD45γ/p38-MAPK/GATA activated the SRY promoter. Knockdown of SRY mRNA in 6-OHDA-treated M17 cells was deleterious, increasing levels of reactive oxygen species (ROS), pro-apoptotic marker PUMA mRNA, and cell injury (+25%, +32% and +34%, respectively). Conversely, ectopic over-expression of SRY in 6-OHDA-treated female SH-SY5Y cells was protective, decreasing ROS, PUMA, and cell injury (-40%, -46%, and -30%, respectively). However, the 6-OHDA-induced increase in SRY expression was diminished with higher concentrations of toxins or with chronic exposure to 6-OHDA. We conclude that SRY upregulation after dopamine cell injury is initially a protective response in males, but diminishes with gradual loss in dopamine cells. We speculate that dysregulation of SRY may contribute the susceptibility of males to PD.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Sex-Determining Region Y Protein/genetics , Up-Regulation/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Benzoquinones/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival/drug effects , Dopaminergic Neurons/drug effects , GATA Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrogen Peroxide/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Oxidopamine/pharmacology , PC12 Cells , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , Rats , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sex-Determining Region Y Protein/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , GADD45 Proteins
18.
J Pharm Biomed Anal ; 92: 203-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24530973

ABSTRACT

Assessment of release kinetics of subcutaneously administered protein therapeutics remains a complex challenge. In vitro methods capable of visualizing and characterizing drug transport properties, in the formulation as well as surrounding subcutaneous tissue environment, are desirable in drug development. Diffusion is a key process in drug release and transport. Thus, our objective was to develop a UV imaging in vitro method for direct visualization and characterization of insulin diffusivity and self-association behavior. Agarose hydrogels were used for mimicking subcutaneous tissue. Diffusivity, self-association, and apparent size of insulin were further characterized by Taylor dispersion analysis, size exclusion chromatography, and dynamic light scattering. At low insulin concentrations and pH 3.0, the hydrodynamic radius of insulin was determined by Taylor dispersion analysis to 1.5±0.1nm, corresponding to the size of insulin monomer. Increasing concentration and pH to 1mM and pH 7.4, respectively, favoring insulin hexamers, increased the insulin hydrodynamic radius to 3.0±0.1nm. The UV imaging method developed was adequately sensitive to identify and characterize, in terms of diffusion coefficients, the changes in insulin transport in hydrogel due to pH and concentration changes. In conclusion, UV imaging allowed insulin diffusion in hydrogel matrixes to be studied in real-time, and showed that insulin self-association properties were reflected in the diffusion behavior. UV imaging is a useful tool for characterization of the influence of environmental conditions on protein mass transport. Hydrogels combined with UV imaging may be of utility for in vitro testing of protein therapeutics.


Subject(s)
Insulin/chemistry , Spectrophotometry, Ultraviolet/methods , Chemistry, Pharmaceutical , Diffusion , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogen-Ion Concentration , Kinetics , Sepharose/chemistry
19.
Ecotoxicology ; 23(2): 163-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24337827

ABSTRACT

Calanus hyperboreus is a key species in the Arctic regions because of its abundance and role in the Arctic food web. Exploitation of the off shore oil reserves along Western Greenland is expected in the near future, and it is important to evaluate the acute and chronic effects of oil emissions to the ecosystem. In this study C. hyperboreus females were exposed to concentrations of 0, 0.1, 1, 10 and 100 nM pyrene and saturated concentrations measured to ~300 nM. Daily quantification of egg and faecal pellet production showed significant decreases in the pellet production, while the egg production was unaffected. The hatching success was also unaffected, although the total reproductive output was reduced with increased pyrene concentrations. Accumulation of pyrene in the copepods was higher in feeding than starving females and only trace amounts of the phase I metabolite 1-hydroxypyrene, were found. Lowered reproductive output, reduced grazing, and reduced ability to metabolize pyrene suggest that oil contamination may constitute a risk to C. hyperboreus recruitment, energy transfer in the food web and transfer of pyrene to higher trophic levels.


Subject(s)
Copepoda/drug effects , Pyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Ecosystem , Environmental Monitoring , Female , Food Chain , Greenland , Ovum/drug effects , Reproduction/drug effects
20.
Development ; 140(20): 4287-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24048591

ABSTRACT

Established transgenesis methods for fish model systems allow efficient genomic integration of transgenes. However, thus far a way of controlling copy number and integration sites has not been available, leading to variable transgene expression caused by position effects. The integration of transgenes at predefined genomic positions enables the direct comparison of different transgenes, thereby improving time and cost efficiency. Here, we report an efficient PhiC31-based site-specific transgenesis system for medaka. This system includes features that allow the pre-selection of successfully targeted integrations early on in the injected generation. Pre-selected embryos transmit the correctly integrated transgene through the germline with high efficiency. The landing site design enables a variety of applications, such as reporter and enhancer switch, in addition to the integration of any insert. Importantly, this allows assaying of enhancer activity in a site-specific manner without requiring germline transmission, thus speeding up large-scale analyses of regulatory elements.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , Integrases/genetics , Oryzias/genetics , Animals , Animals, Genetically Modified , DNA/genetics , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Integrases/metabolism , Oryzias/metabolism , Promoter Regions, Genetic , Transgenes/genetics , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...