Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Sex Med ; 12(1): qfae003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38450258

ABSTRACT

Background: Several studies indicate that compulsive sexual behavior disorder (CSBD) shares core elements with substance use disorder (SUD). These findings support the assumption of common mechanisms in addiction, which may lead to a higher tendency in patients with SUD to have comorbid CSBD. Nevertheless, this relationship between CSBD and SUD is poorly understood to date. Aim: This study aimed to compare the prevalence of CSBD and its subtype pornography use disorder (PUD) between a SUD group and a matched control group. Herein, we aimed to test whether patients with SUD are more likely to have a comorbid CSBD/PUD. We further hypothesized that a higher CSBD/PUD prevalence in patients with SUD is accompanied by more pronounced CSBD- and PUD-related personal characteristics. Methods: We assessed CSBD, PUD, and related personal characteristics in an inpatient SUD sample (N = 92) and a healthy control sample matched by age, gender, and educational level. Outcomes: Primary outcomes were the diagnoses of CSBD/PUD as assessed by questionnaires. CSBD/PUD-related personal characteristics were the early onset of problematic pornography consumption, relationship status as a single person, a high sexual motivation, a high level of time spent watching pornography, and a high degree of problematic pornography consumption (Problematic Pornography Consumption Scale, short version). Results: There was no significant difference between groups regarding CSBD prevalence (SUD sample, 3.3%; control sample, 7.6%) and PUD prevalence (SUD sample, 2.2%; control sample, 6.5%). We found relationship status as a single person and the sexual motivation dimension of importance of sex to be the only CSBD-related personal characteristics that were more pronounced in the SUD sample than the matched control group. Clinical Implications: Results indicate no higher tendency for patients with SUD to develop comorbid CSBD/PUD, yet important vulnerabilities (eg, emotional dysregulation) should be considered when treating addictive disorder to prevent possible symptom displacement. Strengths and Limitations: A strength of the study is that we compared a sample of patients with SUD with a matched control sample and used an instrument based on ICD-11 criteria for CSBD. Possible limitations are significant differences between the groups because of the restrictions in an inpatient clinic that may have influenced responses (eg, roommates) and that the control group was not screened for SUD. Therefore, the results should be interpreted with some caution. Conclusion: We found no evidence of an overcomorbidity of SUD and CSBD/PUD. However, a higher rate of vulnerability factors for CSBD/PUD in the SUD sample might suggest some similarities between SUD and CSBD/PUD.

3.
NPJ Microgravity ; 10(1): 21, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383574

ABSTRACT

Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep deprivation would affect performance not only in the Psychomotor Vigilance Task (PVT), but also in a complex operational task, i.e. simulated manual spacecraft docking. Sixty-two healthy participants completed the manual docking simulation 6df and the PVT once after a night of total sleep deprivation and once after eight hours of scheduled sleep in a counterbalanced order. We assessed the impact of sleep deprivation on docking as well as PVT performance and investigated if sustained attention is an essential component of operational performance after sleep loss. The results showed that docking accuracy decreased significantly after sleep deprivation in comparison to the control condition, but only at difficult task levels. PVT performance deteriorated under sleep deprivation. Participants with larger impairments in PVT response speed after sleep deprivation also showed larger impairments in docking accuracy. In conclusion, sleep deprivation led to impaired 6df performance, which was partly explained by impairments in sustained attention. Elevated motivation levels due to the novelty and attractiveness of the task may have helped participants to compensate for the effects of sleepiness at easier task levels. Continued testing of manual docking skills could be a useful tool both to detect sleep loss-related impairments and assess astronauts' readiness for duty during long-duration missions.

4.
Eur J Neurol ; 29(10): 3112-3116, 2022 10.
Article in English | MEDLINE | ID: mdl-35726171

ABSTRACT

BACKGROUND AND PURPOSE: Animal studies suggest that exposure to severe ambient hypoxia for several days may have beneficial long-term effects on neurodegenerative diseases. Because, the acute risks of exposing human beings to prolonged severe hypoxia on brain structure and function are uncertain, we conducted a pilot study in healthy persons. METHODS: We included two professional mountaineers (participants A and B) in a 35-day study comprising an acclimatization period and 14 consecutive days with oxygen concentrations between 8% and 8.8%. They underwent cerebral magnetic resonance imaging at seven time points and a cognitive test battery covering a spectrum of cognitive domains at 27 time points. We analysed blood neuron specific enolase and neurofilament light chain levels before, during, and after hypoxia. RESULTS: In hypoxia, white matter volumes increased (maximum: A, 4.3% ± 0.9%; B, 4.5% ± 1.9%) whilst gray matter volumes (A, -1.5% ± 0.8%; B, -2.5% ± 0.9%) and cerebrospinal fluid volumes (A, -2.7% ± 2.4%; B, -5.9% ± 8.2%) decreased. Furthermore, the number (A, 11-17; B, 26-126) and volumes (A, 140%; B, 285%) of white matter hyperintensities increased in hypoxia but had returned to baseline after a 3.5-month recovery phase. Diffusion weighted imaging of the white matter indicated cytotoxic edema formation. We did not observe changes in cognitive performance or biochemical brain injury markers. DISCUSSION: In highly selected healthy individuals, severe sustained normobaric hypoxia over 2 weeks elicited reversible changes in brain morphology without clinically relevant changes in cognitive function or brain injury markers. The finding may pave the way for future translational studies assessing the therapeutic potential of hypoxia in neurodegenerative diseases.


Subject(s)
Altitude Sickness , Brain Injuries , Altitude Sickness/diagnostic imaging , Altitude Sickness/etiology , Altitude Sickness/pathology , Animals , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Brain Injuries/complications , Brain Injuries/pathology , Humans , Hypoxia/complications , Hypoxia/pathology , Magnetic Resonance Imaging , Pilot Projects
5.
Front Physiol ; 12: 643854, 2021.
Article in English | MEDLINE | ID: mdl-33815148

ABSTRACT

Environmental and psychological stressors can adversely affect astronaut cognitive performance in space. This study used a 6° head-down tilt bed rest (HDBR) paradigm to simulate some of the physiologic changes induced by microgravity. Twenty-four participants (mean ± SD age 33.3 ± 9.2 years, N = 16 men) spent 60 consecutive days in strict HDBR. They were studied in three groups of eight subjects each. One group served as Control, whereas the other two groups received either a continuous or intermittent artificial gravity (AG) countermeasure of 30 min centrifugation daily (1 g acceleration at the center of mass and 2 g at the feet). Participants performed all 10 tests of NASA's Cognition battery and a brief alertness and mood survey repeatedly before, during, and after the HDBR period. Test scores were adjusted for practice and stimulus set difficulty effects. A modest but statistically significant slowing across a range of cognitive domains was found in all three groups during HDBR compared to baseline, most consistently for sensorimotor speed, whereas accuracy was unaffected. These changes were observed early during HDBR and did not further worsen or improve with increasing time in HDBR, except for emotion recognition performance. With increasing time spent in HDBR, participants required longer time to decide which facial emotion was expressed. They were also more likely to select categories with negative valence over categories with neutral or positive valence. Except for workload, which was rated lower in the Control group, continuous or intermittent AG did not modify the effect of HDBR on cognitive performance or subjective responses. Participants expressed several negative survey responses during HDBR relative to baseline, and some of the responses further deteriorated during recovery, which highlights the importance of adequate medical and psychological support during extended duration HDBR studies. In conclusion, 60 days of HDBR were associated with moderate cognitive slowing and changes in emotion recognition performance, but these effects were not mitigated by either continuous or intermittent exposure to AG for 30 min daily.

6.
Biomacromolecules ; 22(5): 2171-2180, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33830742

ABSTRACT

Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or ß-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine-block-poly(S-ethylsulfonyl-dl-cysteine) (pSar-b-p(dl)Cys), enantiopure polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) (pSar-b-p(l)Cys), and polysarcosine-block-poly(S-ethylsulfonyl-l-homocysteine) (pSar-b-p(l)Hcy) was prepared by N-carboxyanhydride polymerization. The secondary structure of the peptide segment varies from α-helices (pSar-b-p(l)Hcy) to antiparallel ß-sheets (pSar-b-p(l)Cys) and disrupted ß-sheets (pSar-b-p(dl)Cys). When subjected to nanoprecipitation, copolymers with antiparallel ß-sheets display the strongest tendency to self-assemble, whereas disrupted ß-sheets hardly induce aggregation. This translates to worm-like micelles, solely spherical micelles, or ellipsoidal structures, as analyzed by atomic force microscopy and cryogenic transmission electron microscopy, which underlines the potential of secondary structure-driven self-assembly of synthetic polypeptides.


Subject(s)
Polymers , Sulfhydryl Compounds , Micelles , Polymerization , Protein Structure, Secondary
7.
J Appl Physiol (1985) ; 130(4): 1235-1246, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33630672

ABSTRACT

Microgravity and elevated CO2 levels are two important environmental spaceflight stressors that can adversely affect astronaut cognitive performance and jeopardize mission success. This study investigated the effects of 6° head-down tilt bed rest (HDBR) with (n = 11 participants, 30-day HDBR) and without (n = 8 participants, 60-day HDBR) elevated ambient (3.73 mmHg) CO2 concentrations on cognitive performance. Participants of both groups performed all 10 tests of NASA's Cognition battery and a brief alertness and mood survey repeatedly before, during, and after the HDBR period. Test scores were adjusted for practice and stimulus set effects. Concentrating on the first 30 days of HDBR, a modest but statistically significant slowing across a range of cognitive domains was found in both groups (controls: -0.37 SD; 95% CI -0.48, -0.27; adjusted P < 0.0001; CO2: -0.25 SD; 95% CI -0.34, -0.16; adjusted P < 0.001), most prominently for sensorimotor speed. These changes were observed early during HDBR and did not further deteriorate or improve with increasing time in HDBR. The study found similar cognitive effects of HDBR irrespective of CO2 levels, suggesting that elevated CO2 neither ameliorated nor worsened the HDBR effects. In both groups, cognitive performance after 15 days of recovery was statistically indistinguishable from pre-HDBR performance. However, subjects undergoing 60 days of HDBR rated themselves as feeling more sleepy, tired, physically exhausted, stressed, and unhealthy during recovery compared to their 30-day counterparts.NEW AND NOTEWORTHY This study investigated the effects of prolonged head-down tilt bed rest with and without elevated (3.73 mmHg) levels of ambient CO2 on cognitive performance across a range of cognitive domains and is one of the few studies investigating combined effects of environmental stressors prevalent in spaceflight. The study showed moderate declines in cognitive speed induced by head-down tilt bed rest and suggests that exposure to elevated levels of ambient CO2 did not modify this effect.


Subject(s)
Carbon Dioxide , Space Flight , Bed Rest/adverse effects , Cognition , Head-Down Tilt , Humans
8.
Macromol Rapid Commun ; 42(8): e2000470, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33047403

ABSTRACT

The secondary structure formation of polypeptides not only governs folding and solution self-assembly but also affects the nucleophilic ring-opening polymerization of α-amino acid-N-carboxyanhydrides (NCAs). Whereby helical structures are known to enhance polymerization rates, ß-sheet-like assemblies reduce the propagation rate or may even terminate chain growth by precipitation or gelation. To overcome these unfavorable properties, racemic mixtures of NCAs can be applied. In this work, racemic S-(ethylsulfonyl)-dl-cysteine NCA is investigated for the synthesis of polypeptides, diblock and triblock copolypept(o)ides. In contrast to the polymerization of stereoregular S-(ethylsulfonyl)-l-cysteine NCA, the reaction of S-(ethylsulfonyl)-dl-cysteine NCA proceeds with a rate constant of up to kp  = 1.70 × 10-3 L mol-1 s -1 and is slightly faster than the enatiopure polymerization. While the polymerization of S-(ethylsulfonyl)-l-cysteine NCA suffers from incomplete monomer conversion and degrees of polymerization (DPs) limited to 30-40, racemic mixtures yield polypeptides with DPs of up to 102 with high conversion rates and well-defined dispersities (1.2-1.3). The controlled living nature of the ring-opening polymerization of S-(ethylsulfonyl)-dl-cysteine NCA thus enables the synthesis of triblock copolymers by sequential monomer addition. This methodology allows for precise control over DPs of individual blocks and yields uniform triblock copolymers with symmetric molecular weight distributions at a reduced synthetic effort.


Subject(s)
Cysteine , Peptides , Amino Acids , Polymerization , Protein Conformation, beta-Strand
9.
Small ; 15(50): e1904716, 2019 12.
Article in English | MEDLINE | ID: mdl-31722126

ABSTRACT

Circulation lifetime is a crucial parameter for a successful therapy with nanoparticles. Reduction and alteration of opsonization profiles by surface modification of nanoparticles is the main strategy to achieve this objective. In clinical settings, PEGylation is the most relevant strategy to enhance blood circulation, yet it has drawbacks, including hypersensitivity reactions in some patients treated with PEGylated nanoparticles, which fuel the search for alternative strategies. In this work, lipopolysarcosine derivatives (BA-pSar, bisalkyl polysarcosine) with precise chain lengths and low polydispersity indices are synthesized, characterized, and incorporated into the bilayer of preformed liposomes via a post insertion technique. Successful incorporation of BA-pSar can be realized in a clinically relevant liposomal formulation. Furthermore, BA-pSar provides excellent surface charge shielding potential for charged liposomes and renders their surface neutral. Pharmacokinetic investigations in a zebrafish model show enhanced circulation properties and reduction in macrophage recognition, matching the behavior of PEGylated liposomes. Moreover, complement activation, which is a key factor in hypersensitivity reactions caused by PEGylated liposomes, can be reduced by modifying the surface of liposomes with an acetylated BA-pSar derivative. Hence, this study presents an alternative surface modification strategy with similar benefits as the established PEGylation of nanoparticles, but with the potential of reducing its drawbacks.


Subject(s)
Liposomes/chemistry , Peptides/chemistry , Sarcosine/analogs & derivatives , Animals , Animals, Genetically Modified , Complement Activation , Liposomes/pharmacokinetics , Liposomes/ultrastructure , Molecular Weight , Peptides/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Sarcosine/chemical synthesis , Sarcosine/chemistry , Static Electricity , Surface Properties , Zebrafish/genetics
10.
Comput Struct Biotechnol J ; 16: 543-550, 2018.
Article in English | MEDLINE | ID: mdl-30524669

ABSTRACT

Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the protein surface, both in terms of the amount of polymer adsorbed and also in terms of the type of amino acids mainly involved in the interactions. We further analyze the kinetics of adsorption and how it affects the polymer conformations. Minor differences between the polymers are observed in the thickness of the adsorption layer, that are related to the different degree of flexibility of the two molecules. In comparison poly-alanine, an isomer of poly-sarcosine known to self-aggregate and induce protein aggregation, shows a significantly larger affinity for the protein surface than PEG and PSar, which we show to be related not to a different patterns of interactions with the protein surface, but to the different way the polymer interacts with water.

12.
Chemistry ; 22(50): 18085-18091, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27797427

ABSTRACT

The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps.


Subject(s)
Anhydrides/chemistry , Cysteine/chemistry , Disulfides/chemistry , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Amines , Disulfides/chemical synthesis , Polymerization
13.
Front Neurosci ; 8: 114, 2014.
Article in English | MEDLINE | ID: mdl-24971046

ABSTRACT

Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive tool to adapt the human-computer interaction to the user state. To create systems that reliably work in the complexity of the real world, a robustness against contextual changes (e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based workload classification against stress we devise a novel experimental protocol, in which we manipulated the affective context (stressful/non-stressful) while the participant solved a task with two workload levels. We recorded self-ratings, behavior, and physiology from 24 participants to validate the protocol. We test the capability of different, subject-specific workload classifiers using either frequency-domain, time-domain, or both feature varieties to generalize across contexts. We show that the classifiers are able to transfer between affective contexts, though performance suffers independent of the used feature domain. However, cross-context training is a simple and powerful remedy allowing the extraction of features in all studied feature varieties that are more resilient to task-unrelated variations in signal characteristics. Especially for frequency-domain features, across-context training is leading to a performance comparable to within-context training and testing. We discuss the significance of the result for neurophysiology-based workload detection in particular and for the construction of reliable passive brain-computer interfaces in general.

14.
Front Hum Neurosci ; 7: 568, 2013.
Article in English | MEDLINE | ID: mdl-24062669

ABSTRACT

While recent research on Brain-Computer Interfaces (BCI) has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI) often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable ElectroEncephaloGraphy (EEG) patterns (spontaneous BCI control being widely acknowledged as a skill) while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years. In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently.

15.
Front Hum Neurosci ; 7: 295, 2013.
Article in English | MEDLINE | ID: mdl-23801957

ABSTRACT

Most studies on physiological effects of emotion-inducing images and sounds examine stimulus locked variables reflecting a state of at most a few seconds. We here aimed to induce longer lasting emotional states using blocks of repetitive visual, auditory, and bimodal stimuli corresponding to specific valence and arousal levels. The duration of these blocks enabled us to reliably measure heart rate variability as a possible indicator of arousal. In addition, heart rate and skin conductance were determined without taking stimulus timing into account. Heart rate was higher for pleasant and low arousal stimuli compared to unpleasant and high arousal stimuli. Heart rate variability and skin conductance increased with arousal. Effects of valence and arousal on cardiovascular measures habituated or remained the same over 2-min intervals whereas the arousal effect on skin conductance increased. We did not find any effect of stimulus modality. Our results indicate that blocks of images and sounds of specific valence and arousal levels consistently influence different physiological parameters. These parameters need not be stimulus locked. We found no evidence for differences in emotion induction between visual and auditory stimuli, nor did we find bimodal stimuli to be more potent than unimodal stimuli. The latter could be (partly) due to the fact that our bimodal stimuli were not optimally congruent.

SELECTION OF CITATIONS
SEARCH DETAIL
...