Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Nat Methods ; 20(12): 1900-1908, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932397

ABSTRACT

Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.


Subject(s)
Neural Networks, Computer , Organelles , Humans , Cryoelectron Microscopy/methods , Ligands , Organelles/ultrastructure , Electron Microscope Tomography/methods
2.
Brain ; 146(12): 5070-5085, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37635302

ABSTRACT

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Subject(s)
Anodontia , Craniofacial Abnormalities , Demyelinating Diseases , Hereditary Central Nervous System Demyelinating Diseases , Neurodegenerative Diseases , Humans , Animals , Mice , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Hereditary Central Nervous System Demyelinating Diseases/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Mutation/genetics
3.
Sci Adv ; 9(27): eadh2019, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37418517

ABSTRACT

Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.


Subject(s)
Transcription Factors, TFIII , Humans , Cryoelectron Microscopy , Transcription Factors, TFIII/genetics , Transcription, Genetic , DNA/metabolism , RNA, Transfer/genetics
4.
EMBO Rep ; 24(7): e57498, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37227159

ABSTRACT

The surprising decision by Novo Nordisk Foundation (NNF) to discontinue funding for the Center for Protein Research in Copenhagen should prompt discussions about public and private commitment to support basic research.

5.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116470

ABSTRACT

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Subject(s)
Mumps virus , Persistent Infection , Humans , Mumps virus/physiology , Nucleocapsid , Phosphoproteins/metabolism , Virus Replication
6.
Cell Rep ; 40(10): 111316, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36070694

ABSTRACT

RNA polymerase (Pol) III is specialized to transcribe short, abundant RNAs, for which it terminates transcription on polythymine (dT) stretches on the non-template (NT) strand. When Pol III reaches the termination signal, it pauses and forms the pre-termination complex (PTC). Here, we report cryoelectron microscopy (cryo-EM) structures of the yeast Pol III PTC and complementary functional states at resolutions of 2.7-3.9 Å. Pol III recognizes the poly(dT) termination signal with subunit C128 that forms a hydrogen-bond network with the NT strand and, thereby, induces pausing. Mutating key interacting residues interferes with transcription termination in vitro, impairs yeast growth, and causes global termination defects in vivo, confirming our structural results. Additional cryo-EM analysis reveals that C53-C37, a Pol III subcomplex and key termination factor, participates indirectly in Pol III termination. We propose a mechanistic model of Pol III transcription termination and rationalize why Pol III, unlike Pol I and Pol II, terminates on poly(dT) signals.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cryoelectron Microscopy , Poly T , RNA Polymerase III/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Terminator Regions, Genetic
7.
Sci Adv ; 8(28): eabm9875, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857496

ABSTRACT

RNA polymerase III (RNAPIII) synthesizes essential and abundant noncoding RNAs such as transfer RNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the nontemplate strand. Here, we combine high-resolution genome-wide analyses and in vitro transcription termination assays to revisit the mechanism of RNAPIII transcription termination in budding yeast. We show that T-tracts are necessary but not always sufficient for termination and that secondary structures of the nascent RNAs are important auxiliary cis-acting elements. Moreover, we show that the helicase Sen1 plays a key role in a fail-safe termination pathway. Our results provide a comprehensive model illustrating how multiple mechanisms cooperate to ensure efficient RNAPIII transcription termination.


Subject(s)
RNA Polymerase III , Saccharomyces cerevisiae Proteins , DNA Helicases/metabolism , Genome-Wide Association Study , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
8.
Nat Rev Mol Cell Biol ; 23(9): 603-622, 2022 09.
Article in English | MEDLINE | ID: mdl-35505252

ABSTRACT

The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.


Subject(s)
DNA-Directed RNA Polymerases , Eukaryota , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Eukaryota/genetics , Eukaryota/metabolism , RNA , RNA Polymerase II/metabolism , Transcription, Genetic/genetics
9.
Sci Adv ; 8(16): eabn5725, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35442737

ABSTRACT

Preribosomal RNA is selectively transcribed by RNA polymerase (Pol) I in eukaryotes. The yeast transcription factor upstream activating factor (UAF) represses Pol II transcription and mediates Pol I preinitiation complex (PIC) formation at the 35S ribosomal RNA gene. To visualize the molecular intermediates toward PIC formation, we determined the structure of UAF in complex with native promoter DNA and transcription factor TATA-box-binding protein (TBP). We found that UAF recognizes DNA using a hexameric histone-like scaffold with markedly different interactions compared with the nucleosome and the histone-fold-rich transcription factor IID (TFIID). In parallel, UAF positions TBP for Core Factor binding, which leads to Pol I recruitment, while sequestering it from DNA and Pol II/III-specific transcription factors. Our work thus reveals the structural basis of RNA Pol selection by a transcription factor.


Subject(s)
DNA-Binding Proteins , RNA Polymerase I , DNA/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , RNA/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins , Transcription Factors/metabolism , Transcription, Genetic
10.
Nucleic Acids Res ; 50(1): 490-511, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34893887

ABSTRACT

In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.


Subject(s)
DNA, Viral/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Trans-Activators/metabolism , Viral Proteins/metabolism , DNA Methylation , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Protein Binding , Virus Replication
11.
Nat Struct Mol Biol ; 28(12): 997-1008, 2021 12.
Article in English | MEDLINE | ID: mdl-34887565

ABSTRACT

RNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.


Subject(s)
Neoplasms/genetics , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase I/metabolism , Binding Sites , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Neoplasms/pathology , Protein Binding/physiology , Protein Conformation , Protein Multimerization , RNA Polymerase I/genetics , RNA, Ribosomal/biosynthesis , Transcription, Genetic/genetics
12.
Elife ; 102021 12 24.
Article in English | MEDLINE | ID: mdl-34951584

ABSTRACT

Lamella micromachining by focused ion beam milling at cryogenic temperature (cryo-FIB) has matured into a preparation method widely used for cellular cryo-electron tomography. Due to the limited ablation rates of low Ga+ ion beam currents required to maintain the structural integrity of vitreous specimens, common preparation protocols are time-consuming and labor intensive. The improved stability of new-generation cryo-FIB instruments now enables automated operations. Here, we present an open-source software tool, SerialFIB, for creating automated and customizable cryo-FIB preparation protocols. The software encompasses a graphical user interface for easy execution of routine lamellae preparations, a scripting module compatible with available Python packages, and interfaces with three-dimensional correlative light and electron microscopy (CLEM) tools. SerialFIB enables the streamlining of advanced cryo-FIB protocols such as multi-modal imaging, CLEM-guided lamella preparation and in situ lamella lift-out procedures. Our software therefore provides a foundation for further development of advanced cryogenic imaging and sample preparation protocols.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Specimen Handling/methods , Animals , Chlamydomonas reinhardtii , Drosophila melanogaster , Haptophyta , HeLa Cells , Humans , Saccharomyces cerevisiae , Software
13.
Nat Struct Mol Biol ; 28(2): 210-219, 2021 02.
Article in English | MEDLINE | ID: mdl-33558764

ABSTRACT

RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.


Subject(s)
Models, Molecular , RNA Polymerase III/chemistry , Binding Sites , Cryoelectron Microscopy , HEK293 Cells , Humans , Protein Conformation , RNA Polymerase III/ultrastructure , Transcription, Genetic
14.
Nat Commun ; 11(1): 4905, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999288

ABSTRACT

Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.


Subject(s)
Gene Expression Regulation, Fungal , RNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/genetics , Transcription Factors, TFIII/ultrastructure , Animals , Cell Line , Cryoelectron Microscopy , DNA, Fungal/genetics , DNA, Fungal/metabolism , Genes, Fungal/genetics , Insecta , Protein Domains , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIIIB/genetics , Transcription Factor TFIIIB/isolation & purification , Transcription Factor TFIIIB/metabolism , Transcription Factors, TFIII/genetics , Transcription Factors, TFIII/isolation & purification , Transcription Factors, TFIII/metabolism , Transcription Initiation Site , Transcription Initiation, Genetic
15.
Nature ; 586(7831): 796-800, 2020 10.
Article in English | MEDLINE | ID: mdl-32879490

ABSTRACT

Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange1,2. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood. Here we combine in situ structural biology and integrative modelling with correlative light and electron microscopy and molecular perturbation to structurally analyse NPCs in intact Saccharomyces cerevisiae cells within the context of nuclear envelope remodelling. We find an in situ conformation and configuration of the Nup subcomplexes that was unexpected from the results of previous in vitro analyses. The configuration of the Nup159 complex appears critical to spatially accommodate its function as an mRNA export platform, and as a mediator of NPC turnover. The omega-shaped nuclear envelope herniae that accumulate in nup116Δ cells3 conceal partially assembled NPCs lacking multiple subcomplexes, including the Nup159 complex. Under conditions of starvation, herniae of a second type are formed that cytoplasmically expose NPCs. These results point to a model of NPC turnover in which NPC-containing vesicles bud off from the nuclear envelope before degradation by the autophagy machinery. Our study emphasizes the importance of investigating the structure-function relationship of macromolecular complexes in their cellular context.


Subject(s)
Cryoelectron Microscopy , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/ultrastructure , Autophagy , Models, Molecular , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tomography
16.
Nat Struct Mol Biol ; 27(3): 229-232, 2020 03.
Article in English | MEDLINE | ID: mdl-32066962

ABSTRACT

Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.


Subject(s)
RNA Polymerase III/chemistry , Repressor Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Transcription Factor TFIIIB/chemistry , Transcription Factors/chemistry , Transcription, Genetic , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transcription Factor TFIIIB/genetics , Transcription Factor TFIIIB/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Nat Commun ; 10(1): 5543, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804486

ABSTRACT

RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III.


Subject(s)
DNA, Fungal/genetics , Promoter Regions, Genetic/genetics , RNA Polymerase I/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Binding Sites/genetics , Cryoelectron Microscopy , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Domains , RNA Polymerase I/chemistry , RNA Polymerase I/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Transcription Initiation, Genetic
18.
Sci Adv ; 5(7): eaaw2326, 2019 07.
Article in English | MEDLINE | ID: mdl-31309145

ABSTRACT

The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.


Subject(s)
Multiprotein Complexes/metabolism , Peptide Elongation Factors/metabolism , RNA, Transfer/genetics , Anticodon/chemistry , Binding Sites , Catalytic Domain , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Models, Molecular , Molecular Conformation , Multiprotein Complexes/chemistry , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Protein Binding , RNA, Transfer/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Structure ; 27(5): 727-728, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31067442

ABSTRACT

Trithorax histone methyltransferase Ash1/ASH1L is tightly regulated because it activates developmental gene transcription and counteracts Polycomb silencing. In this issue of Structure, Lee et al. (2019) and Hou et al. (2019) report the crystal structure of ASH1L bound to its activator MRG15 and suggest a mechanism that releases ASH1L auto-inhibition.


Subject(s)
DNA-Binding Proteins , Drosophila Proteins , Histone Methyltransferases , Histone-Lysine N-Methyltransferase , Histones , Methylation , Transcription Factors
20.
Elife ; 82019 03 26.
Article in English | MEDLINE | ID: mdl-30913026

ABSTRACT

RNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-electron microscopy (EM) structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-EM structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the Pol I-specific transcription-like factors A49-A34.5 and A12.2. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our structural and biochemical data suggest a mechanism where reversible binding of the A49-A34.5 heterodimer could contribute to the regulation of Pol I transcription initiation and elongation.


Subject(s)
Cryoelectron Microscopy , RNA Polymerase I/ultrastructure , Protein Conformation , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...