Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38399872

ABSTRACT

This study investigates the interaction of polyacrylamide (PAM) of different functional groups (sulfonate vs. carboxylate) and charge density (30% hydrolysed vs. 10% hydrolysed) with calcium carbonate (CaCO3) via atomic force microscopy (AFM) and partly via molecular dynamic (MD) simulations. The PAM used were F3330 (30% hydrolysed), AN125 (25% sulfonated), and AN910 (% hydrolysed). A total of 100 ppm of PAMs was prepared in 0.1% NaCl, 3% NaCl, and 4.36% NaNO3 to be employed in AFM experiments, while oligomeric models (30 repeating units) of hydrolysed polyacrylamide (HPAM), sulfonated polyacrylamide (SPAM), and neutral PAM (NPAM) were studied on a model calcite surface on MD simulations. AFM analysis indicated that F3330 has a higher average adhesion and interaction energy with CaCO3 than AN125 due to the bulky sulfonate side group of AN125 interfering with SPAM adsorption. Steric repulsion of both PAMs was similar due to their comparable molecular weights and densities of the charged group. In contrast, AN910 showed lower average adhesion and interaction energy, along with slightly longer steric repulsion with calcite than F3330, suggesting AN910 adopts more loops and tails than the slightly flatter F3330 configuration. An increase in salt concentration from 0.1% to 3% NaCl saw a reduction in adhesion and interaction energy for F3330 and AN125 due to charge screening, while AN910 saw an increase, and these values increased further at 4.36% NaNO3. MD simulations revealed that the salt ions in the system formed salt bridges between PAM and calcite, indicating that the adhesion and interaction energy observed from AFM are likely to be the net balance between PAM charged group screening and salt bridging by the salt ions present. Salt ions with larger bare radii and smaller hydrated radii were shown to form stronger salt bridges.

2.
J Phys Chem B ; 128(2): 551-566, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38181201

ABSTRACT

This work reports the computation and modeling of the self-diffusivity (D*), shear viscosity (η*), and thermal conductivity (κ*) of the Mie fluid. The transport properties were computed using equilibrium molecular dynamics simulations for the Mie fluid with repulsive exponents (λr) ranging from 7 to 34 and at a fixed attractive exponent (λa) of 6 over the whole fluid density (ρ*) range and over a wide temperature (T*) range. The computed database consists of 17,212, 14,288, and 13,099 data points for self-diffusivity, shear viscosity, and thermal conductivity, respectively. The database is successfully validated against published simulation data. The above-mentioned transport properties are correlated using artificial neural networks (ANNs). Two modeling approaches were tested: a semiempirical formulation based on entropy scaling and an empirical formulation based on density and temperature as input variables. For the former, it was found that a unique formulation based on entropy scaling does not yield satisfactory results over the entire density range due to a divergent and incorrect scaling of the transport properties at low densities. For the latter empirical modeling approach, it was found that regularizing the data, e.g., modeling ρ*D* instead of D*, ln η* instead of η*, and ln κ* instead of κ*, as well as using the inverse of the temperature as an input feature, helps to ease the interpolation efforts of the artificial neural networks. The trained ANNs can model seen and unseen data over a wide range of density and temperature. Ultimately, the ANNs can be used alongside equations of state to regress effective force field parameters from volumetric and transport data.

3.
Polymers (Basel) ; 15(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896286

ABSTRACT

In this work, the interaction of hydrolysed polyacrylamide (HPAM) of two molecular weights (F3330, 11-13 MDa; F3530, 15-17 MDa) with calcium carbonate (CaCO3) was studied via atomic force microscopy (AFM). In the absence of polymers at 1.7 mM and 1 M NaCl, good agreement with DLVO theory was observed. At 1.7 mM NaCl, repulsive interaction during approach at approximately 20 nm and attractive adhesion of approximately 400 pN during retraction was measured, whilst, at 1 M NaCl, no repulsion during approach was found. Still, a significantly larger adhesion of approximately 1400 pN during retraction was observed. In the presence of polymers, results indicated that F3330 displayed higher average adhesion (450-625 pN) and interaction energy (43-145 aJ) with CaCO3 than F3530's average adhesion (85-88 pN) and interaction energy (8.4-11 aJ). On the other hand, F3530 exerted a longer steric repulsion distance (70-100 nm) than F3330 (30-70 nm). This was likely due to the lower molecular weight. F3330 adopted a flatter configuration on the calcite surface, creating more anchor points with the surface in the form of train segments. The adhesion and interaction energy of both HPAM with CaCO3 can be decreased by increasing the salt concentration. At 3% NaCl, the average adhesion and interaction energy of F3330 was 72-120 pN and 5.6-17 aJ, respectively, while the average adhesion and interaction energy of F3530 was 11.4-48 pN and 0.3-2.98 aJ, respectively. The reduction of adhesion and interaction energy was likely due to the screening of the COO- charged group of HPAM by salt cations, leading to a reduction of electrostatic attraction between the negatively charged HPAM and the positively charged CaCO3.

4.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687196

ABSTRACT

In poorly consolidated carbonate rock reservoirs, solids production risk, which can lead to increased environmental waste, can be mitigated by injecting formation-strengthening chemicals. Classical atomistic molecular dynamics (MD) simulation is employed to model the interaction of polyacrylamide-based polymer additives with a calcite structure, which is the main component of carbonate formations. Amongst the possible calcite crystal planes employed as surrogates of reservoir rocks, the (1 0 4) plane is shown to be the most suitable surrogate for assessing the interactions with chemicals due to its stability and more realistic representation of carbonate structure. The molecular conformation and binding energies of pure polyacrylamide (PAM), hydrolysed polyacrylamide in neutral form (HPAM), hydrolysed polyacrylamide with 33% charge density (HPAM 33%) and sulfonated polyacrylamide with 33% charge density (SPAM 33%) are assessed to determine the adsorption characteristics onto calcite surfaces. An adsorption-free energy analysis, using an enhanced umbrella sampling method, is applied to evaluate the chemical adsorption performance. The interaction energy analysis shows that the polyacrylamide-based polymers display favourable interactions with the calcite structure. This is attributed to the electrostatic attraction between the amide and carboxyl functional groups with the calcite. Simulations confirm that HPAM33% has a lower free energy than other polymers, presumably due to the presence of the acrylate monomer in ionised form. The superior chemical adsorption performance of HPAM33% agrees with Atomic Force Microscopy experiments reported herein.

5.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37161943

ABSTRACT

A procedure for deriving thermodynamically consistent data-driven equations of state (EoS) for fluids is presented. The method is based on fitting the Helmholtz free energy using artificial neural networks to obtain a closed-form relationship between the thermophysical properties of fluids (FE-ANN EoS). As a proof-of-concept, an FE-ANN EoS is developed for the Mie fluids, starting from a database obtained by classical molecular dynamics simulations. The FE-ANN EoS is trained using first- (pressure and internal energy) and second-order (e.g., heat capacities, Joule-Thomson coefficients) derivative data. Additional constraints ensure that the data-driven model fulfills thermodynamically consistent limits and behavior. The results for the FE-ANN EoS are shown to be as accurate as the best available analytical model while being developed in a fraction of the time. The robustness of the "digital" equation of state is exemplified by computing physical behavior it has not been trained on, for example, fluid phase equilibria. Furthermore, the model's internal consistency is successfully assessed using Brown's characteristic curves.

6.
Phys Chem Chem Phys ; 25(18): 12607-12628, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37114325

ABSTRACT

This manuscript provides an overview of the current state of the art in terms of the molecular modelling of the thermophysical properties of fluids. It is intended to manage the expectations and serve as guidance to practising physical chemists, chemical physicists and engineers in terms of the scope and accuracy of the more commonly available intermolecular potentials along with the peculiarities of the software and methods employed in molecular simulations while providing insights on the gaps and opportunities available in this field. The discussion is focused around case studies which showcase both the precision and the limitations of frequently used workflows.

7.
ACS Nano ; 16(7): 10775-10782, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35726839

ABSTRACT

Experimental measurements have reported ultrafast and radius-dependent water transport in carbon nanotubes which are absent in boron nitride nanotubes. Despite considerable effort, the origin of this contrasting (and fascinating) behavior is not understood. Here, with the aid of machine learning-based molecular dynamics simulations that deliver first-principles accuracy, we investigate water transport in single-wall carbon and boron nitride nanotubes. Our simulations reveal a large, radius-dependent hydrodynamic slippage on both materials, with water experiencing indeed a ≈5 times lower friction on carbon surfaces compared to boron nitride. Analysis of the diffusion mechanisms across the two materials reveals that the fast water transport on carbon is governed by facile oxygen motion, whereas the higher friction on boron nitride arises from specific hydrogen-nitrogen interactions. This work not only delivers a clear reference of quantum mechanical accuracy for water flow in single-wall nanotubes but also provides detailed mechanistic insight into its radius and material dependence for future technological application.

8.
J Colloid Interface Sci ; 625: 328-339, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35717847

ABSTRACT

HYPOTHESIS: Predicting the surface tension (SFT)-log(c) profiles of hydrocarbon surfactants in aqueous solution is computationally non-trivial, and empirically challenging due to the diverse and complex architecture and interactions of surfactant molecules. Machine learning (ML), combining a data-based and knowledge-based approach, can provide a powerful means to relate molecular descriptors to SFT profiles. EXPERIMENTS: A dataset of SFT for 154 model hydrocarbon surfactants at 20-30 °C is fitted to the Szyszkowski equation to extract three characteristic parameters (Γmax,KL and critical micelle concentration (CMC)) which are correlated to a series of 2D and 3D molecular descriptors. Key (∼10) descriptors were selected by removing co-correlation, and employing a gradient-boosted regressor model to rank feature importance and carry out recursive feature elimination (RFE). The hyperparameters of each target-variable model were fine-tuned using a randomised cross-validated grid search, to improve predictive ability and reduce overfitting. FINDINGS: The ML models correlate favourably with test experimental data, with R2= 0.69-0.87, and the merits and limitations of the approach are discussed based on 'unseen' hydrocarbon surfactants. The incorporation of a knowledge-based framework provides an appropriate smoothing of the experimental data which simplifies the data-driven approach and enhances its generality. Open-source codes and a brief tutorial are provided.


Subject(s)
Micelles , Surface-Active Agents , Hydrocarbons , Machine Learning , Surface Tension , Water
9.
J Phys Chem B ; 126(5): 1085-1100, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35104134

ABSTRACT

The boundary-driven molecular modeling strategy to evaluate mass transport coefficients of fluids in nanoconfined media is revisited and expanded to multicomponent mixtures. The method requires setting up a simulation with bulk fluid reservoirs upstream and downstream of a porous media. A fluid flow is induced by applying an external force at the periodic boundary between the upstream and downstream reservoirs. The relationship between the resulting flow and the density gradient of the adsorbed fluid at the entrance/exit of the porous media provides for a direct path for the calculation of the transport diffusivities. It is shown how the transport diffusivities found this way relate to the collective, Onsager, and self-diffusion coefficients, typically used in other contexts to describe fluid transport in porous media. Examples are provided by calculating the diffusion coefficients of a Lennard-Jones (LJ) fluid and mixtures of differently sized LJ particles in slit pores, a realistic model of methane in carbon-based slit pores, and binary mixtures of methane with hypothetical counterparts having different attractions to the solid. The method is seen to be robust and particularly suited for the study of study of transport of dense fluids and liquids in nanoconfined media.

10.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160401

ABSTRACT

Carbonate rock strengthening using chemical techniques is a strategy to prevent excessive fines migration during oil and gas production. We provide herein a study of the adsorption of three types of hydrolysed polyacrylamide (HPAM) of different molecular weight (F3330S, 11-13 MDa; F3530 S, 15-17 MDa; F3630S, 18-20 MDa) onto calcium carbonate (CaCO3) particles via spectrophotometry using a Shimadzu UV-2600 spectrometer. The results are compared to different adsorption isotherms and kinetic models. The Langmuir isotherm shows the highest correlation coefficient (R2 > 0.97) with equilibrium parameters (RL) ranging between 0 and 1 for all three HPAMs, suggesting a favorable monolayer adsorption of HPAM onto CaCO3. The adsorption follows pseudo-second order kinetics, indicating that the interaction of HPAM with CaCO3 is largely dependent on the adsorbate concentration. An adsorption plot reveals that the amount of HPAM adsorbed onto CaCO3 at equilibrium increases with higher polymer molecular weight; the equilibrium adsorbed values for F3330S, F3530S and F3630S are approximately 0.24 mg/m2, 0.31 mg/m2, and 0.43 mg/m2, respectively. Zeta potential analysis shows that CaCO3 has a zeta potential of +12.32 mV, which transitions into negative values upon introducing HPAM. The point of zero charge (PZC) is observed at HPAM dosage between 10 to 30 ppm, in which the pH here lies between 9-10.

11.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518232

ABSTRACT

Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.

12.
Nano Lett ; 21(19): 8143-8150, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34519502

ABSTRACT

Graphene's intrinsically corrugated and wrinkled topology fundamentally influences its electronic, mechanical, and chemical properties. Experimental techniques allow the manipulation of pristine graphene and the controlled production of defects which allows one to control the atomic out-of-plane fluctuations and thus tune graphene's properties. Here, we perform large scale machine learning-driven molecular dynamics simulations to understand the impact of defects on the structure of graphene. We find that defects cause significantly higher corrugation leading to a strongly wrinkled surface. The magnitude of this structural transformation strongly depends on the defect concentration and specific type of defect. Analyzing the atomic neighborhood of the defects reveals that the extent of these morphological changes depends on the preferred geometrical orientation and the interactions between defects. While our work highlights that defects can strongly affect graphene's morphology, it also emphasizes the differences between distinct types by linking the global structure to the local environment of the defects.


Subject(s)
Graphite , Electronics , Molecular Dynamics Simulation
13.
J Chem Inf Model ; 61(3): 1244-1250, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33595304

ABSTRACT

In this work, we showcase SGTPy, a Python open-source code developed to calculate interfacial properties (interfacial concentration profiles and interfacial or surface tension) for pure fluids and fluid mixtures. SGTPy employs the Square Gradient Theory (SGT) coupled to the Statistical Associating Fluid Theory of Variable Range employing a Mie potential (SAFT-VR-Mie). SGTPy uses standard Python numerical packages (i.e., NumPy, SciPy) and can be used under Jupyter notebooks. Its features are the calculation of phase stability, phase equilibria, interfacial properties, and the optimization of the SGT and SAFT parameters for vapor-liquid, liquid-liquid and vapor-liquid-liquid equilibria for pure fluids and multicomponent mixtures. Phase equilibrium calculations include two-phase and multiphase flash, bubble and dew points, and the tangent plane distance. For the computation of interfacial properties, SGTPy incorporates several options to solve the interfacial concentration, such as the path technique, an auxiliary time function, and orthogonal collocation. Additionally, the SGTPy code allows the inclusion of subroutines from other languages (e.g., Fortran, and C++) through Cython and f2py Python tools, which opens the possibility for future extensions or recycling tested and optimized subroutines from other codes. Supporting Information includes a review of the theoretical expressions required to couple SAFT-VR-Mie equation of state with the SGT. The use and capabilities of SGTPy are illustrated through step by step examples written on Jupyter notebooks for the cases of pure fluids and binary and ternary mixtures in bi- and three- phasic equilibria. The SGTPy code can be downloaded from https://github.com/gustavochm/SGTPy.


Subject(s)
Virtual Reality , Gases , Software , Surface Tension , Thermodynamics
14.
J Phys Chem B ; 124(39): 8628-8639, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32870675

ABSTRACT

Equations of state (EoS) for fluids have been a staple of engineering design and practice for over a century. Available EoS are based on the fitting of a closed-form analytical expression to suitable experimental data. The mathematical structure and the underlying physical model significantly restrain the applicability and accuracy of the resulting EoS. This contribution explores the issues surrounding the substitution of machine-learned models for analytical EoS. In particular, we describe, as a proof of concept, the effectiveness of a machine-learned model to replicate the statistical associating fluid theory (SAFT-VR Mie) EoS for pure fluids. To quantify the effectiveness of machine-learning techniques, a large set of pseudodata is obtained from the EoS and used to train the machine-learning models. We employ artificial neural networks and Gaussian process regression to correlate and predict thermodynamic properties such as critical pressure and temperature, vapor pressures, and densities of pure model fluids; these are performed on the basis of molecular descriptors. The comparisons between the machine-learned EoS and the surrogate data set suggest that the proposed approach shows promise as a viable technique for the correlation and prediction of thermophysical properties of fluids.

15.
Molecules ; 25(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218362

ABSTRACT

Interfacial properties such as interfacial profiles, surface activity, wetting transitions, and interfacial tensions along the three-phase line are described for a Type IIIa binary mixture. The methodological approach combines the square gradient theory coupled to the statistical associating fluid theory for Mie potentials of variable range, and coarse-grained molecular dynamics simulations using the same underlying potential. The water + n-hexane mixture at three-phase equilibrium is chosen as a benchmark test case. The results show that the use of the same molecular representation for both the theory and the simulations provides a complementary picture of the aforementioned mixture, with an excellent agreement between the molecular models and the available experimental data. Interfacial tension calculations are extended to temperatures where experimental data are not available. From these extrapolations, it is possible to infer a first order wetting transition at 347.2 K, where hexane starts to completely wet the water/vapor interface. Similarly, the upper critical end point is estimated at 486.3 K. Both results show a very good agreement to the available experimental information. The concentration profiles confirm the wetting behavior of n-hexane along with a strong positive surface activity that increases with temperature, contrasting the weak positive surface activity of water that decreases with temperature.


Subject(s)
Thermodynamics , Models, Chemical , Molecular Dynamics Simulation , Surface Tension
16.
J Chem Phys ; 152(7): 074507, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32087642

ABSTRACT

We extend the statistical associating fluid theory of quantum corrected Mie potentials (SAFT-VRQ Mie), previously developed for pure fluids [Aasen et al., J. Chem. Phys. 151, 064508 (2019)], to fluid mixtures. In this model, particles interact via Mie potentials with Feynman-Hibbs quantum corrections of first order (Mie-FH1) or second order (Mie-FH2). This is done using a third-order Barker-Henderson expansion of the Helmholtz energy from a non-additive hard-sphere reference system. We survey existing experimental measurements and ab initio calculations of thermodynamic properties of mixtures of neon, helium, deuterium, and hydrogen and use them to optimize the Mie-FH1 and Mie-FH2 force fields for binary interactions. Simulations employing the optimized force fields are shown to follow the experimental results closely over the entire phase envelopes. SAFT-VRQ Mie reproduces results from simulations employing these force fields, with the exception of near-critical states for mixtures containing helium. This breakdown is explained in terms of the extremely low dispersive energy of helium and the challenges inherent in current implementations of the Barker-Henderson expansion for mixtures. The interaction parameters of two cubic equations of state (Soave-Redlich-Kwong and Peng-Robinson) are also fitted to experiments and used as performance benchmarks. There are large gaps in the ranges and properties that have been experimentally measured for these systems, making the force fields presented especially useful.

17.
Molecules ; 24(3)2019 Feb 09.
Article in English | MEDLINE | ID: mdl-30744108

ABSTRACT

We report on molecular simulations of model fluids composed of three tangentially bonded Lennard-Jones interaction sites with three distinct morphologies: a flexible "pearl-necklace" chain, a rigid "stiff" linear configuration, and an equilateral rigid triangular ring. The adsorption of these three models in cylindrical pores of diameters 1, 2, and 3 nm and with varying solid⁻fluid strength was determined by direct molecular dynamics simulations, where a sample pore was placed in contact with a bulk fluid. Adsorption isotherms of Type I, V, and H1 were obtained depending on the choice of pore size and solid⁻fluid strength. Additionally, the bulk-phase equilibria, the nematic order parameter of the adsorbed phase, and the self-diffusion coefficient in the direction of the pore axis were examined. It was found that both the molecular shape and the surface attractions play a decisive role in the shape of the adsorption isotherm. In general, the ring molecules showed a larger adsorption, while the fully flexible model showed the smallest adsorption. Morphology and surface strength were found to have a lesser effect on the diffusion of the molecules. An exceptional high adsorption and diffusion, suggesting an enhanced permeability, was observed for the linear stiff molecules in ultraconfinement, which was ascribed to a phase transition of the adsorbed fluid into a nematic liquid crystal.


Subject(s)
Molecular Dynamics Simulation , Nanopores , Phase Transition , Adsorption , Algorithms , Diffusion , Models, Chemical
18.
J Phys Chem B ; 123(10): 2380-2396, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30735393

ABSTRACT

Fully atomistic simulations of models of asphaltenes in simple solvents have allowed the study of trends in aggregation phenomena to understand the underlying role played by molecular structure. The detail included at this scale of molecular modeling is, however, at odds with the required spatial and temporal resolution needed to fully understand asphaltene aggregation. The computational cost required to explore the relevant scales can be reduced by employing coarse-grained (CG) models, which consist of lumping a few atoms into a single segment that is characterized by effective interactions. In this work, CG force fields developed via the statistical associating fluid theory (SAFT-γ) [ Müller , E. A. ; Jackson , G. Annu. Rev. Chem. Biomol. Eng. 5 , 2014 , 405 - 427 ] equation of state (EoS) provide a reliable pathway to link the molecular description with macroscopic thermophysical data. A recent modification of the SAFT-VR EoS [ Müller , E. A. ; Mejía , A. Langmuir 33 , 2017 , 11518 - 11529 ], which allows for the parameterization of homonuclear rings, is selected as the starting point to develop CG models for polycyclic aromatic hydrocarbons. The new aromatic-core models, along with others published for simpler organic molecules, are adopted for the construction of asphaltene models by combining different chemical moieties in a group-contribution fashion. We apply the procedure to two previously reported asphaltene models and perform molecular dynamics simulations to validate the coarse-grained representation against benchmark systems of 27 asphaltenes in a pure solvent (toluene or heptane) described in a fully atomistic fashion. An excellent match between both levels of description is observed for the cluster size, radii of gyration, and relative-shape-anisotropy-factor distributions. We exploit the advantages of the CG representation by simulating systems containing up to 2000 asphaltene molecules in an explicit solvent investigating the effect of asphaltene concentration, solvent composition, and temperature on aggregation. By studying large systems facilitated by the use of CG models, we observe stable continuous distributions of molecular aggregates at conditions away from the two-phase precipitation point. As a further example application, a widely accepted interpretation of cluster-size distributions in asphaltenic systems is challenged by performing system-size tests, reversibility checks, and a time-dependence analysis. The proposed coarse-graining procedure is seen to be general and predictive and, hence, can be applied to other asphaltenic molecular structures.

19.
J Phys Chem B ; 122(39): 9161-9177, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30179489

ABSTRACT

The SAFT-γ Mie group-contribution equation of state [ Papaioannou J. Chem. Phys. 2014 , 140 , 054107 ] is used to develop a transferable coarse-grained (CG) force-field suitable for the molecular simulation of linear alkanes. A heterogroup model is fashioned at the resolution of three carbon atoms per bead in which different Mie (generalized Lennard-Jones) interactions are used to characterize the terminal (CH3-CH2-CH2-) and middle (-CH2-CH2-CH2-) beads. The force field is developed by combining the SAFT-γ CG top-down approach [ Avendaño J. Phys. Chem. B 2011 , 115 , 11154 ], using experimental phase-equilibrium data for n-alkanes ranging from n-nonane to n-pentadecane to parametrize the intermolecular (nonbonded) bead-bead interactions, with a bottom-up approach relying on simulations based on the higher resolution TraPPE united-atom (UA) model [ Martin ; , Siepmann J. Phys. Chem. B 1998 , 102 , 2569 ] to establish the intramolecular (bonded) interactions. The transferability of the SAFT-γ CG model is assessed from a detailed examination of the properties of linear alkanes ranging from n-hexane ( n-C6H14) to n-octadecane ( n-C18H38), including an additional evaluation of the reliability of the description for longer chains such as n-hexacontane ( n-C60H122) and a prototypical linear polyethylene of moderate molecular weight ( n-C900H1802). A variety of structural, thermodynamic, and transport properties are examined, including the pair distribution functions, vapor-liquid equilibria, interfacial tension, viscosity, and diffusivity. Particular focus is placed on the impact of incorporating intramolecular interactions on the accuracy, transferability, and representability of the CG model. The novel SAFT-γ CG force field is shown to provide a reliable description of the thermophysical properties of the n-alkanes, in most cases at a level comparable to the that obtained with higher resolution models.

20.
J Chem Phys ; 148(17): 174504, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29739218

ABSTRACT

The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the µs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

SELECTION OF CITATIONS
SEARCH DETAIL
...