Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(8): 6044-6051, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38621359

ABSTRACT

The GTPase KRAS acts as a switch in cellular signaling, transitioning between inactive GDP-bound and active GTP-bound states. In about 20% of human cancers, oncogenic RAS mutations disrupt this balance, favoring the active form and promoting proliferative signaling, thus rendering KRAS an appealing target for precision medicine in oncology. In 2013, Shokat and co-workers achieved a groundbreaking feat by covalently targeting a previously undiscovered allosteric pocket (switch II pocket (SWIIP)) of KRASG12C. This breakthrough led to the development and approval of sotorasib (AMG510) and adagrasib (MRTX849), revolutionizing the treatment of KRASG12C-dependent lung cancer. Recent achievements in targeting various KRASG12X mutants, using SWIIP as a key binding pocket, are discussed. Insights from successful KRASG12C targeting informed the design of molecules addressing other mutations, often in a covalent manner. These findings offer promise for innovative approaches in addressing commonly occurring KRAS mutations such as G12D, G12V, G12A, G12S, and G12R in various cancers.


Subject(s)
Antineoplastic Agents , Piperazines , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrimidines , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mutation , Neoplasms/drug therapy , Animals
2.
J Med Chem ; 66(9): 6297-6314, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37130057

ABSTRACT

Fragment-based drug discovery has played an important role in medicinal chemistry and pharmaceutical research. Despite numerous demonstrated successes, the limited diversity and overrepresentation of planar, sp2-rich structures in commercial libraries often hamper the full potential of this approach. Hence, the thorough design of screening libraries inevitably determines the probability for meaningful hits and subsequent structural elaboration. Against this background, we present the generation of an exclusive fragment library based on iterative entry nomination by a specifically designed computational workflow: "Fragtory". Following a pharmacophore diversity-driven approach, we used Fragtory in an interdisciplinary academic setting to guide both tailored synthesis efforts and the implementation of in-house compounds to build a curated 288-member library of sp3-enriched fragments. Subsequent NMR screens against a model protein and hit validation by protein crystallography led to the identification of structurally novel ligands that were further characterized by isothermal titration calorimetry, demonstrating the applicability of our experimental approach.


Subject(s)
Drug Discovery , Pharmacophore , Proteins , Protein Binding , Ligands , Drug Design
3.
ACS Med Chem Lett ; 14(5): 591-598, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37197473

ABSTRACT

Drug resistance mutations emerging during the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) inhibitors represent a major challenge in personalized cancer treatment and require constant development of new inhibitors. For the covalent irreversible EGFR inhibitor osimertinib, the predominant resistance mechanism is the acquired C797S mutation, which abolishes the covalent anchor point and thus results in a dramatic loss in potency. In this study, we present next-generation reversible EGFR inhibitors with the potential to overcome this EGFR-C797S resistance mutation. For this, we combined the reversible methylindole-aminopyrimidine scaffold known from osimertinib with the affinity driving isopropyl ester of mobocertinib. By occupying the hydrophobic back pocket, we were able to generate reversible inhibitors with subnanomolar activity against EGFR-L858R/C797S and EGFR-L858R/T790M/C797S with cellular activity on EGFR-L858R/C797S dependent Ba/F3 cells. Additionally, we were able to resolve cocrystal structures of these reversible aminopyrimidines, which will guide further inhibitor design toward C797S-mutated EGFR.

4.
Elife ; 122023 03 27.
Article in English | MEDLINE | ID: mdl-36972177

ABSTRACT

Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.


Subject(s)
Neoplasms , Nucleotides , Humans , Kinetics , ras Proteins/genetics , Signal Transduction , Neoplasms/drug therapy , Neoplasms/genetics
5.
J Med Chem ; 65(15): 10341-10356, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35912476

ABSTRACT

High-throughput nanomole-scale synthesis allows for late-stage functionalization (LSF) of compounds in an efficient and economical manner. Here, we demonstrated that copper-catalyzed azide-alkyne cycloaddition could be used for the LSF of covalent kinase inhibitors at the nanoscale, enabling the synthesis of hundreds of compounds that did not require purification for biological assay screening, thus reducing experimental time drastically. We generated crude libraries of inhibitors for the kinase MKK7, derived from two different parental precursors, and analyzed them via the high-throughput In-Cell Western assay. Select inhibitors were resynthesized, validated via conventional biological and biochemical methods such as western blots and liquid chromatography-mass spectrometry (LC-MS) labeling, and successfully co-crystallized. Two of these compounds showed over 20-fold increased inhibitory activity compared to the parental compound. This study demonstrates that high-throughput LSF of covalent inhibitors at the nanomole-scale level can be an auspicious approach in improving the properties of lead chemical matter.


Subject(s)
Alkynes , Azides , Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , High-Throughput Screening Assays , Mass Spectrometry/methods
6.
PLoS One ; 17(6): e0267651, 2022.
Article in English | MEDLINE | ID: mdl-35731722

ABSTRACT

Misregulation and mutations of the transcription factor Nrf2 are involved in the development of a variety of human diseases. In this study, we employed the technology of stapled peptides to address a protein-DNA-complex and designed a set of Nrf2-based derivatives. Varying the length and position of the hydrocarbon staple, we chose the best peptide for further evaluation in both fixed and living cells. Peptide 4 revealed significant enrichment within the nucleus compared to its linear counterpart 5, indicating potent binding to DNA. Our studies suggest that these molecules offer an interesting strategy to target activated Nrf2 in cancer cells.


Subject(s)
NF-E2-Related Factor 2 , Peptides , DNA , Humans , Hydrocarbons/chemistry , NF-E2-Related Factor 2/genetics , Peptides/chemistry
7.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35486541

ABSTRACT

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutagenesis, Insertional , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
8.
ChemMedChem ; 17(10): e202100776, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35170857

ABSTRACT

Akt is a protein kinase that has been implicated in the progression of cancerous tumours. A number of covalent allosteric Akt inhibitors are known, and based on these scaffolds, a small library of novel potential covalent allosteric imidazopyridine-based inhibitors was designed. The envisaged compounds were synthesised, with click chemistry enabling a modular approach to a number of the target compounds. The binding modes, potencies and antiproliferative activities of these synthesised compounds were explored, thereby furthering the structure activity relationship knowledge of this class of Akt inhibitors. Three novel covalent inhibitors were identified, exhibiting moderate activity against Akt1 and various cancer cell lines, potentially paving the way for future covalent allosteric inhibitors with improved properties.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Allosteric Regulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
9.
Nat Commun ; 12(1): 5297, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489430

ABSTRACT

The protein kinase Akt plays a pivotal role in cellular processes. However, its isoforms' distinct functions have not been resolved to date, mainly due to the lack of suitable biochemical and cellular tools. Against this background, we present the development of an isoform-dependent Ba/F3 model system to translate biochemical results on isoform specificity to the cellular level. Our cellular model system complemented by protein X-ray crystallography and structure-based ligand design results in covalent-allosteric Akt inhibitors with unique selectivity profiles. In a first proof-of-concept, the developed molecules allow studies on isoform-selective effects of Akt inhibition in cancer cells. Thus, this study will pave the way to resolve isoform-selective roles in health and disease and foster the development of next-generation therapeutics with superior on-target properties.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphocytes/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Cell Line , Drug Design , Gene Expression , HEK293 Cells , Humans , Inhibitory Concentration 50 , Lymphocytes/cytology , Lymphocytes/enzymology , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Small Molecule Libraries/chemical synthesis , Spodoptera , Structure-Activity Relationship
10.
ACS Med Chem Lett ; 11(12): 2484-2490, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335671

ABSTRACT

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) and currently the gold-standard for the treatment of patients suffering from non-small cell lung cancer (NSCLC) harboring T790M-mutated epidermal growth factor receptor (EGFR). The outcome of the treatment, however, is limited by the emergence of the C797S resistance mutation. Allosteric inhibitors have a different mode of action and were developed to overcome this limitation. However, most of these innovative molecules are not effective as a single agent. Recently, mutated EGFR was successfully addressed with osimertinib combined with the allosteric inhibitor JBJ-04-125-02, but surprisingly, structural insights into their binding mode were lacking. Here, we present the first complex crystal structures of mutant EGFR in complex with third-generation inhibitors such as osimertinib and mavelertinib in the presence of simultaneously bound allosteric inhibitors. These structures highlight the possibility of further combinations targeting EGFR and lay the foundation for hybrid inhibitors as next-generation TKIs.

11.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32931277

ABSTRACT

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Subject(s)
Drug Design , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Kinetics , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
12.
RSC Med Chem ; 11(7): 760-770, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33479673

ABSTRACT

KRas is the most frequently mutated oncogene in human cancer, and even 40 years after the initial discovery of Ras oncogenes in 1982, no approved drug directly targets Ras in Ras-driven cancer. New information and approaches for direct targeting of mutant Ras have fueled hope for the development of direct KRas inhibitors. In this review, we provide a comprehensive historical perspective of the development of promising KRasG12C inhibitors that covalently bind to the mutated cysteine residue in the switch-II pocket and trap the protein in the inactive GDP bound state. After decades of failure, three covalent G12C-specific inhibitors from three independent companies have recently entered clinical trials and therefore represent new hope for patients suffering from KRasG12C driven cancer.

14.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31857889

ABSTRACT

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

15.
Angew Chem Int Ed Engl ; 58(52): 18823-18829, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31584233

ABSTRACT

Isoforms of protein kinase Akt are involved in essential processes including cell proliferation, survival, and metabolism. However, their individual roles in health and disease have not been thoroughly evaluated. Thus, there is an urgent need for perturbation studies, preferably mediated by highly selective bioactive small molecules. Herein, we present a structure-guided approach for the design of structurally diverse and pharmacologically beneficial covalent-allosteric modifiers, which enabled an investigation of the isoform-specific preferences and the important residues within the allosteric site of the different isoforms. The biochemical, cellular, and structural evaluations revealed interactions responsible for the selective binding profiles. The isoform-selective covalent-allosteric Akt inhibitors that emerged from this approach showed a conclusive structure-activity relationship and broke ground in the development of selective probes to delineate the isoform-specific functions of Akt kinases.


Subject(s)
Allosteric Regulation/physiology , Allosteric Site/physiology , Protein Isoforms/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Humans , Structure-Activity Relationship
16.
Cell Chem Biol ; 26(10): 1338-1348, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31378709

ABSTRACT

In this review we discuss and compare recently introduced molecules that are able to react covalently with an oncogenic mutant of KRas, KRas G12C. Two different classes of compounds in question have been developed, both leading to the mutant being locked in the inactive (guanosine diphosphate [GDP]-bound) state. The first are compounds that interact reversibly with the switch-II pocket (S-IIP) before covalent interaction. The second class interact in a competitive manner with the GDP/guanosine triphosphate (GTP) binding site. The fundamental physico-chemical principles of the two inhibitor classes are evaluated. For GDP/GTP-competing molecules, we show that special attention must be paid to the influence of guanine nucleotide exchange factors (GEFs) and their elevated activity in cells harboring abnormally activated Ras mutants. A new approach is suggested involving compounds that interact with the guanine binding site of the GTPase, but in a manner that is independent of the interaction of the GTPase with its cognate GEF.


Subject(s)
Small Molecule Libraries/pharmacology , ras Proteins/antagonists & inhibitors , Animals , Binding Sites/drug effects , Guanosine Diphosphate/antagonists & inhibitors , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/antagonists & inhibitors , Guanosine Triphosphate/chemistry , Humans , Small Molecule Libraries/chemistry , ras Proteins/genetics
17.
Chem Sci ; 10(12): 3573-3585, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30996949

ABSTRACT

The Ser/Thr kinase Akt (Protein Kinase B/PKB) is a master switch in cellular signal transduction pathways. Its downstream signaling influences cell proliferation, cell growth, and apoptosis, rendering Akt a prominent drug target. The unique activation mechanism of Akt involves a change of the relative orientation of its N-terminal pleckstrin homology (PH) and the kinase domain and makes this kinase suitable for highly specific allosteric modulation. Here we present a unique set of crystal structures of covalent-allosteric interdomain inhibitors in complex with full-length Akt and report the structure-based design, synthesis, biological and pharmacological evaluation of a focused library of these innovative inhibitors.

18.
Photochem Photobiol Sci ; 18(6): 1398-1407, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30924488

ABSTRACT

In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38α MAPK and CK1δ. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties. When the isolated isomers, or the photostationary state (PSS) of isomers, were tested in commonly used in vitro kinase assays, however, only small differences in activity were observed. X-ray analyses of ligand-bound p38α MAPK and CK1δ complexes revealed dynamic conformational adaptations of the protein with respect to both isomers. More importantly, irreversible reduction of the azo group to the corresponding hydrazine was observed. Independent experiments revealed that reducing agents such as DTT (dithiothreitol) and GSH (glutathione) that are typically used for protein stabilization in biological assays were responsible. Two further sources of error are the concentration dependence of the E-Z-switching efficiency and artefacts due to incomplete exclusion of light during testing. Our findings may also apply to a number of previously investigated azobenzene-based photoswitchable inhibitors.


Subject(s)
Azocines/pharmacology , Casein Kinase Idelta/antagonists & inhibitors , Imidazoles/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Azocines/chemistry , Casein Kinase Idelta/metabolism , Dose-Response Relationship, Drug , Imidazoles/chemistry , Ligands , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Molecular Structure , Photochemical Processes , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiazoles/chemistry
19.
Cancer Res ; 79(9): 2367-2378, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30858154

ABSTRACT

Aberrations within the PI3K/AKT signaling axis are frequently observed in numerous cancer types, highlighting the relevance of these pathways in cancer physiology and pathology. However, therapeutic interventions employing AKT inhibitors often suffer from limitations associated with target selectivity, efficacy, or dose-limiting effects. Here we present the first crystal structure of autoinhibited AKT1 in complex with the covalent-allosteric inhibitor borussertib, providing critical insights into the structural basis of AKT1 inhibition by this unique class of compounds. Comprehensive biological and preclinical evaluation of borussertib in cancer-related model systems demonstrated a strong antiproliferative activity in cancer cell lines harboring genetic alterations within the PTEN, PI3K, and RAS signaling pathways. Furthermore, borussertib displayed antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models of mutant KRAS pancreatic and colon cancer. SIGNIFICANCE: Borussertib, a first-in-class covalent-allosteric AKT inhibitor, displays antitumor activity in combination with the MEK inhibitor trametinib in patient-derived xenograft models and provides a starting point for further pharmacokinetic/dynamic optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Mutation , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Therapy, Combination , Female , Humans , Mice , Mice, Nude , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Small GTPases ; 10(1): 40-46, 2019 01.
Article in English | MEDLINE | ID: mdl-28129037

ABSTRACT

Rab proteins regulate vesicular transport in eukaryotic cells and establish connections to various cellular structures and processes by interacting with so-called effector molecules. Several of these effectors are known to not only bind a single Rab protein, but to be able to bind multiple different Rabs simultaneously. In this review we will give a short overview of effectors in general and (putative) functions of the aforementioned multivalent Rab:effector interactions.


Subject(s)
rab GTP-Binding Proteins/metabolism , Protein Conformation , rab GTP-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...