Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Science ; 374(6573): 1370-1376, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34882461

ABSTRACT

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.

2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845017

ABSTRACT

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Subject(s)
Conservation of Natural Resources , Forests , Models, Biological , Tropical Climate
3.
Nat Ecol Evol ; 3(6): 928-934, 2019 06.
Article in English | MEDLINE | ID: mdl-31011177

ABSTRACT

Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.


Subject(s)
Tropical Climate , Wood , Ecology , Forests , Trees
4.
Sci Adv ; 5(3): eaau3114, 2019 03.
Article in English | MEDLINE | ID: mdl-30854424

ABSTRACT

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.


Subject(s)
Biodiversity , Ecosystem , Forests , Tropical Climate , Conservation of Natural Resources , Geography
5.
An Acad Bras Cienc ; 87(4): 2081-90, 2015.
Article in English | MEDLINE | ID: mdl-26628017

ABSTRACT

The natural vegetation of Southern Brazil's coastal region includes grasslands formations that are poorly considered in conservation policy, due to the lack of knowledge about these systems. This study reports results from a regional-scale survey of coastal grasslands vegetation along a 536 km gradient on southern Brazil. We sampled 16 sites along the coastal plain with 15 plots (1 m²) per site. All sites were grazed by cattle. We estimated plant species cover, vegetation height, percentage of bare soil, litter and manure, and classified species according to their growth forms. We found 221 species, 14 of them exotic and two threatened. The prostate grasses: Axonopus aff.affinis, Paspalum notatum and P. pumilumwere among the most important species. Prostrate graminoids species represented the most important vegetation cover, followed by cespitose grasses. Vegetation height, bare soil, litter and manure were similar among all areas, highlighting the homogeneity of sampling sites due to similar management. In comparison to other grasslands formations in Southern Brazil, the coastal grasslands presented rather low species richness. The presence of high values for bare soil at all sampling sites indicates the need to discuss management practices in the region, especially with regard to the intensity of livestock grazing.


Subject(s)
Biodiversity , Environmental Monitoring , Grassland , Animals , Cattle , Livestock
6.
Science ; 349(6245): 302-5, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26185249

ABSTRACT

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.


Subject(s)
Biodiversity , Grassland , Plant Development , Biomass , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...