Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Nat Protoc ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637703

ABSTRACT

The rational development of small-molecule degraders (e.g., proteolysis targeting chimeras) remains a challenge as the rate-limiting steps that determine degrader efficiency are largely unknown. Standard methods in the field of targeted protein degradation mostly rely on classical, low-throughput endpoint assays such as western blots or quantitative proteomics. Here we applied NanoLuciferase- and HaloTag-based screening technologies to determine the kinetics and stability of small-molecule-induced ternary complex formation between a protein of interest and a selected E3 ligase. A collection of live-cell assays were designed to probe the most critical steps of the degradation process while minimizing the number of required expression constructs, making the proposed assay pipeline flexible and adaptable to the requirements of the users. This approach evaluates the underlying mechanism of selective target degraders and reveals the exact characteristics of the developed degrader molecules in living cells. The protocol allows scientists trained in basic cell culture and molecular biology to carry out small-molecule proximity-inducer screening via tracking of the ternary complex formation within 2 weeks of establishment, while degrader screening using the HiBiT system requires a CRISPR-Cas9 engineered cell line whose generation can take up to 3 months. After cell-line generation, degrader screening and validation can be carried out in high-throughput manner within days.

3.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350720

ABSTRACT

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Subject(s)
Potassium Channels , Pruritus , Animals , Mice , Antipruritics/therapeutic use , Histamine/metabolism , Loxapine/therapeutic use , Potassium Channels/metabolism , Pruritus/drug therapy , Pruritus/metabolism
4.
J Med Chem ; 67(5): 3813-3842, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38422480

ABSTRACT

Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.


Subject(s)
Protein Serine-Threonine Kinases , p21-Activated Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
5.
bioRxiv ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38405908

ABSTRACT

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55 as a potent dual EPHA2/GAK inhibitor. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells, mainly via its EPHA2 activity, and is therefore a promising candidate for further optimization of its activity against dengue virus.

7.
J Med Chem ; 67(1): 674-690, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38126712

ABSTRACT

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Subject(s)
Apoptosis , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Mammals/metabolism
8.
Front Microbiol ; 14: 1295262, 2023.
Article in English | MEDLINE | ID: mdl-38075900

ABSTRACT

The soil-dwelling delta-proteobacterium Myxococcus xanthus is a model organism to study predation and competition. M. xanthus preys on a broad range of bacteria mediated by lytic enzymes, exopolysaccharides, Type-IV pilus-based motility, and specialized metabolites. Competition between M. xanthus and prey bacterial strains with various specialized metabolite profiles indicates a range of fitness, suggesting that specialized metabolites contribute to prey survival. To expand our understanding of how specialized metabolites affect predator-prey dynamics, we assessed interspecies interactions between M. xanthus and two strains of Bacillus cereus. While strain ATCC 14579 resisted predation, strain T was found to be highly sensitive to M. xanthus predation. The interaction between B. cereus ATCC 14579 and M. xanthus appears to be competitive, resulting in population loss for both predator and prey. Genome analysis revealed that ATCC 14579 belongs to a clade that possesses the biosynthetic gene cluster for production of thiocillins, whereas B. cereus strain T lacks those genes. Further, purified thiocillin protects B. cereus strains unable to produce this specialized metabolite, strengthening the finding that thiocillin protects against predation and contributes to the ecological fitness of B. cereus ATCC 14579. Lastly, strains that produce thiocillin appear to confer some level of protection to their own antibiotic by encoding an additional copy of the L11 ribosomal protein, a known target for thiopeptides. This work highlights the importance of specialized metabolites affecting predator-prey dynamics in soil microenvironments.

9.
Nat Chem Biol ; 19(11): 1301-1302, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845552

Subject(s)
Biology , Data Accuracy
10.
Hepatology ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870288

ABSTRACT

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

11.
J Med Chem ; 66(20): 14278-14302, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37819647

ABSTRACT

Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.


Subject(s)
Class II Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Protein Isoforms , Phosphatidylinositols
12.
Nat Chem Biol ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904048

ABSTRACT

Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.

13.
Cell Chem Biol ; 30(12): 1634-1651.e6, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37797617

ABSTRACT

Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic responses in functional studies using chemical probes. Therefore, robust methods are needed to predict and quantify phospholipidosis (PL) early in drug discovery and in chemical probe characterization. Here, we present a versatile high-content live-cell imaging approach, which was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and evaluated several machine learning models using the most comprehensive set of publicly available compounds and interpreted the best model using SHapley Additive exPlanations (SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal using our algorithm revealed that closely related molecules, such as chemical probes and their matched negative controls can differ in their ability to induce PL, highlighting the importance of identifying PL for robust target validation in chemical biology.


Subject(s)
Lipidoses , Lysosomal Storage Diseases , Humans , Lipidoses/chemically induced , Phospholipids , Machine Learning , Drug Discovery
14.
Free Radic Biol Med ; 208: 859-876, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37793500

ABSTRACT

Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.


Subject(s)
Ammonium Compounds , Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/metabolism , Urease/metabolism , Urease/pharmacology , Oxidative Stress , Anti-Infective Agents/metabolism , Ammonium Compounds/metabolism , Ammonium Compounds/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
J Biotechnol ; 374: 90-100, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37572793

ABSTRACT

The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.


Subject(s)
Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolism , Lactose , Carbohydrate Metabolism , Fermentation , Hydrogen-Ion Concentration
16.
Methods Mol Biol ; 2706: 59-73, 2023.
Article in English | MEDLINE | ID: mdl-37558941

ABSTRACT

The characterization of chemogenomic libraries with respect to their general effect on cellular health represents essential data for the annotation of phenotypic responses. Here, we describe a multidimensional high-content live cell assay that allows to examine cell viability in different cell lines, based on their nuclear morphology as well as modulation of small molecules of tubulin structure, mitochondrial health, and membrane integrity. The protocol monitors cells during a time course of 48 h using osteosarcoma cells, human embryonic kidney cells, and untransformed human fibroblasts as an example. The described protocol can be easily established and it can be adapted to other cell lines or other parameters important for cellular health.


Subject(s)
Fibroblasts , Microscopy , Humans , Cell Line , Tubulin , Mitochondria
17.
Methods Mol Biol ; 2706: 75-88, 2023.
Article in English | MEDLINE | ID: mdl-37558942

ABSTRACT

In recent years, the assembly and annotation of chemogenomic libraries have gained interest by the phenotypic screening community. Apart from basic annotations of the compound potency and selectivity, these compound libraries benefit in particular from annotation regarding the effect of the inhibitors on cellular viability to distinguish between on-target effects of a compound and unspecific cytotoxicity. Here, we provide a protocol to determine viability as a first determinant in compound quality control, using the Incucyte live-cell imaging system. The compounds are classified according to their calculated growth rate to determine a cytotoxic, cytostatic, or healthy outcome. All compounds affecting the growth rate can be further evaluated regarding their specific effects on cell health in a high-content live-cell multiplex assay, described in Chapter 5 .


Subject(s)
Cell Survival , Microscopy , Microscopy/methods
18.
Cancer Discov ; 13(10): 2192-2211, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37489084

ABSTRACT

In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Biological Specimen Banks , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tumor Cells, Cultured , Cancer-Associated Fibroblasts/metabolism , Organoids/pathology , Tumor Microenvironment/genetics
19.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360399

ABSTRACT

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

20.
Clin Ophthalmol ; 17: 1347-1355, 2023.
Article in English | MEDLINE | ID: mdl-37192996

ABSTRACT

Purpose: To assess the ability of two self-monitoring digital devices to detect metamorphopsia in myopic choroidal neovascularization (mCNV) and compare their usability. Patients and Methods: This was a 12-month prospective observational study at a tertiary care eye hospital, Switzerland. Twenty-three Caucasian patients with mCNV were recruited, 21 eyes were analyzed. Primary and secondary outcome measures: Primary outcome measures were the metamorphopsia index scores as assessed by the two self-monitoring digital devices (Alleye App and AMD - A-Metamorphopsia-Detector software) at baseline, at 6 and 12 months and individual optional visits in between. Secondary outcome measures included best corrected visual acuity and morphological parameters (including disease activity) as evaluated by spectral-domain optical coherence tomography and fundus autofluorescence imaging. Location of mCNV was graded using the Early Treatment of Diabetic Retinopathy Study grid overlay. A usability questionnaire was administered at 12 months. Bland-Altman plots evaluated the limits of agreement of both devices. Linear regression analysis assessed the correlation between the difference and the average of the two scores. Results: A total of 202 tests were performed. Disease activity of mCNV was observed at least once in 14 eyes. Both scores concordantly detected metamorphopsia exhibiting a displaced scale of measurement yielding a coefficient of determination of 0.99. Concordance rate for pathological scores was 73.3%. Both scores were not significantly different in active and inactive mCNV. Overall, the usability scores were higher for the Alleye App than the AMD - A-Metamorphopsia-Detector software (4.61±0.56 vs 3.31±1.20; p<0.001). In subjects aged >75 years, scores were slightly lower (4.08±0.86 vs 2.97±1.16; p= 0.032). Conclusion: Whilst both self-monitoring devices concordantly identified metamorphopsia, they might act as an adjunct to hospital visits, but due to slight reactivations in mCNV and presence of metamorphopsia also in inactive disease the ability of detecting early mCNV activity might be limited.

SELECTION OF CITATIONS
SEARCH DETAIL
...