Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Adv Mater ; 36(5): e2303196, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37865947

ABSTRACT

Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.


Subject(s)
Bioprinting , Neoplasms , Humans , Spheroids, Cellular/pathology , Hydrogels/chemistry , Neoplasms/pathology , Human Umbilical Vein Endothelial Cells , Tissue Engineering
2.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139386

ABSTRACT

Myeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g., BRCA1). We investigated the therapeutic potential of targeting BRCA1 haploinsufficiency alongside the JAK2V617F driver mutation. We assessed the efficacy of combining the PARP inhibitor olaparib with interferon-alpha (IFNα) in CRISPR/Cas9-engineered Brca1+/- Jak2V617F-positive 32D cells. Olaparib treatment induced a higher number of DNA double-strand breaks, as demonstrated by γH2AX analysis through Western blot (p = 0.024), flow cytometry (p = 0.013), and confocal microscopy (p = 0.071). RAD51 foci formation was impaired in Brca1+/- cells compared to Brca1+/+ cells, indicating impaired homologous recombination repair due to Brca1 haploinsufficiency. Importantly, olaparib enhanced apoptosis while diminishing cell proliferation and viability in Brca1+/- cells compared to Brca1+/+ cells. These effects were further potentiated by IFNα. Olaparib induced interferon-stimulated genes and increased endogenous production of IFNα in Brca1+/- cells. These responses were abrogated by STING inhibition. In conclusion, our findings suggest that the combination of olaparib and IFNα presents a promising therapeutic strategy for MPN patients by exploiting the synthetic lethality between germline BRCA1 mutations and the JAK2V617F MPN driver mutation.


Subject(s)
BRCA1 Protein , Myeloproliferative Disorders , Neoplasms , Humans , BRCA1 Protein/genetics , DNA , Germ Cells , Haploinsufficiency , Interferon-alpha/pharmacology , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Recombinational DNA Repair , Synthetic Lethal Mutations
3.
Sci Signal ; 15(721): eabd9303, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35167339

ABSTRACT

Cellular signaling responses show substantial cell-to-cell heterogeneity, which is often ascribed to the inherent randomness of biochemical reactions, termed molecular noise, wherein high noise implies low signaling fidelity. Alternatively, heterogeneity could arise from differences in molecular content between cells, termed molecular phenotypic variability, which does not necessarily imply imprecise signaling. The contribution of these two processes to signaling heterogeneity is unclear. Here, we fused fibroblasts to produce binuclear syncytia to distinguish noise from phenotypic variability in the analysis of cytokine signaling. We reasoned that the responses of the two nuclei within one syncytium could approximate the signaling outcomes of two cells with the same molecular content, thereby disclosing noise contribution, whereas comparison of different syncytia should reveal contribution of phenotypic variability. We found that ~90% of the variance in the primary response (which was the abundance of phosphorylated, nuclear STAT) to stimulation with the cytokines interferon-γ and oncostatin M resulted from differences in the molecular content of individual cells. Thus, our data reveal that cytokine signaling in the system used here operates in a reproducible, high-fidelity manner.


Subject(s)
Interferon-gamma , Signal Transduction , Biological Variation, Population , Oncostatin M/genetics , Signal Transduction/physiology
4.
Leukemia ; 36(2): 333-347, 2022 02.
Article in English | MEDLINE | ID: mdl-34518644

ABSTRACT

We show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist. Likewise, injection of a recombinant OSM molecular trap made of OSMR complex extracellular domains enhances HSC mobilization in poor mobilizing C57BL/6 and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Mechanistically, OSM attenuates HSC chemotactic response to CXCL12 and increases HSC homing to the BM signaling indirectly via BM endothelial and mesenchymal cells which are the only cells expressing OSMR in the BM. OSM up-regulates E-selectin expression on BM endothelial cells indirectly increasing HSC proliferation. RNA sequencing of HSCs from Osmr-/- and wild-type mice suggest that HSCs have altered cytoskeleton reorganization, energy usage and cycling in the absence of OSM signaling in niches. Therefore OSM is an important regulator of HSC niche function restraining HSC mobilization and anti-OSM therapy combined with current mobilizing regimens may improve HSPC mobilization for transplantation.


Subject(s)
Bone Marrow/physiology , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells/cytology , Oncostatin M/metabolism , Stem Cell Niche , Animals , Bone Marrow/drug effects , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD
5.
Adv Healthc Mater ; 10(10): e2100132, 2021 05.
Article in English | MEDLINE | ID: mdl-33694324

ABSTRACT

To ensure the long-term success of dental implants, a functional attachment of the soft tissue to the surface of the implant abutment is decisively important in order to prevent the penetration of bacteria into the implant-bone interface, which can trigger peri-implant disease. Here a surface modification approach is described that includes the covalent immobilization of the extracellular matrix (ECM) proteins fibronectin and laminin via a crosslinker to silanized Ti6Al4V and Y-TZP surfaces. The surface properties are evaluated using static contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The interaction of human gingival fibroblasts (HGFs) with the immobilized ECM proteins is verified by analyzing the localization of focal contacts, cell area, cell morphology, proliferation rate, and integrin expression. It is observed in the presence of fibronectin and laminin an increased cellular attachment, proliferation, and integrin expression of HGFs accompanied by a significantly higher number of focal adhesions. The presented approach holds great potential to enable a stronger bond between soft tissue and implant abutment surface. This could potentially help to prevent the penetration of bacteria in an in vivo application and thus reduce the risk of periimplant disease.


Subject(s)
Dental Implants , Extracellular Matrix Proteins , Cell Adhesion , Cell Proliferation , Dental Abutments , Fibroblasts , Gingiva , Humans , Surface Properties , Titanium
7.
Cancers (Basel) ; 12(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217941

ABSTRACT

Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.

8.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32213712

ABSTRACT

Septic cardiomyopathy is a life-threatening organ dysfunction caused by sepsis. Ribonuclease 1 (RNase 1) belongs to a group of host-defense peptides that specifically cleave extracellular RNA (eRNA). The activity of RNase 1 is inhibited by ribonuclease-inhibitor 1 (RNH1). However, the role of RNase 1 in septic cardiomyopathy and associated cardiac apoptosis is completely unknown. Here, we show that sepsis resulted in a significant increase in RNH1 and eRNA serum levels compared with those of healthy subjects. Treatment with RNase 1 resulted in a significant decrease of apoptosis, induced by the intrinsic pathway, and TNF expression in murine cardiomyocytes exposed to either necrotic cardiomyocytes or serum of septic patients for 16 hours. Additionally, treatment of septic mice with RNase 1 resulted in a reduction in cardiac apoptosis, TNF expression, and septic cardiomyopathy. These data demonstrate that eRNA plays a crucial role in the pathophysiology of the organ (cardiac) dysfunction in sepsis and that RNase and RNH1 may be new therapeutic targets and/or strategies to reduce the cardiac injury and dysfunction caused by sepsis.


Subject(s)
Cardiomyopathies/metabolism , Cell-Free Nucleic Acids/metabolism , Ribonuclease, Pancreatic/metabolism , Sepsis/metabolism , Animals , Apoptosis/physiology , Cardiomyopathies/etiology , Carrier Proteins/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Proteins/metabolism , Sepsis/complications
9.
Stem Cell Res Ther ; 11(1): 105, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32138773

ABSTRACT

BACKGROUND: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS: In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS: Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS: Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , DNA Copy Number Variations
10.
Shock ; 53(1): 78-87, 2020 01.
Article in English | MEDLINE | ID: mdl-31157718

ABSTRACT

The role of microvesicles (MVs) in transcellular signal transduction has been demonstrated in different studies. However, the potential modulatory role of MVs in fracture healing remains unclear. Therefore, we investigated the impact of plasma-derived MVs after a femoral fracture on cranial osteoblasts. A femoral fracture with intramedullary stabilization was induced in Sprague Dawley rats. The animals were killed 3 days (group A), 1 week (group B), or 2 weeks (group C) after trauma induction. Animals without trauma served as controls. Osteoblasts from the cranial bone of a neonatal Sprague Dawley rats were cultured and stimulated with either plasma-derived MVs or MV-free plasma of groups A to C. The effects of MVs on osteoblasts were analyzed by growth assay, metabolic assay, and quantitative real-time polymerase chain reaction for osteocalcin, RUNX2, and collagen 1A to test differentiation of osteoblasts. MVs were time-dependently incorporated in osteoblasts and localized mainly around the nucleus. MVs increased the viability of osteoblasts, particularly in the late phase after femoral fracture (group A, P = 0.0276; group B, P = 0.0295; group C, P = 0.0407). Late-phase differentiation of osteoblasts was not stimulated by MVs but was by MV-free plasma (osteocalcin, groups C vs. control, P = 0.0454). The levels of transforming growth factor ß1 (P = 0.0320) and insulin-like growth factor 1 ( P = 0.0211) were significantly higher in plasma than in MVs. MVs seem to modulate the viability of osteoblasts but not to affect osteoblast differentiation. Further studies are warranted to determine the characteristics and interactions of MVs. Potentially, MVs might act as a diagnostic or therapeutic tool in cases of impairment of fracture healing.


Subject(s)
Femoral Fractures/metabolism , Osteoblasts/cytology , Animals , Cell Differentiation/physiology , Collagen/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Vesicles/metabolism , Female , Fracture Healing/physiology , Osteoblasts/metabolism , Osteocalcin/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology
11.
Cancers (Basel) ; 11(11)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752278

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins are transcription factors that in the latent state are located predominantly in the cytoplasm. Activation of STATs through phosphorylation of a single tyrosine residue results in nuclear translocation. The requirement of tyrosine phosphorylation for nuclear accumulation is shared by all STAT family members but mechanisms of nuclear translocation vary between different STATs. These differences offer opportunities for specific intervention. To achieve this, the molecular mechanisms of nucleocytoplasmic shuttling of STATs need to be understood in more detail. In this review we will give an overview on the various aspects of nucleocytoplasmic shuttling of latent and activated STATs with a special focus on STAT3 and STAT5. Potential targets for cancer treatment will be identified and discussed.

12.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534053

ABSTRACT

The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.


Subject(s)
Albuminuria/chemically induced , Diabetic Nephropathies/pathology , Everolimus/adverse effects , Glomerulosclerosis, Focal Segmental/pathology , TOR Serine-Threonine Kinases/metabolism , Aged , Aged, 80 and over , Animals , Biopsy , Cells, Cultured , Child, Preschool , Datasets as Topic , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Epithelial Cells/pathology , Everolimus/administration & dosage , Female , Gene Expression Profiling , Humans , Hypertrophy/drug therapy , Hypertrophy/pathology , Infant , Male , Mice , Mice, Knockout , Middle Aged , Podocytes , Primary Cell Culture , Regeneration , Signal Transduction/drug effects , Signal Transduction/genetics , Streptozocin/toxicity , TOR Serine-Threonine Kinases/analysis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Up-Regulation , Young Adult
13.
Kidney Int ; 96(2): 505-516, 2019 08.
Article in English | MEDLINE | ID: mdl-31155155

ABSTRACT

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Subject(s)
Glomerulonephritis/pathology , Histocytological Preparation Techniques/methods , Imaging, Three-Dimensional , Podocytes/physiology , Single-Cell Analysis/methods , Animals , Capillaries , Disease Models, Animal , Disease Progression , Fluorescence , Fluorescent Dyes/chemistry , Genes, Reporter/genetics , Glomerulonephritis/immunology , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Podocytes/ultrastructure
14.
Leukemia ; 33(8): 1964-1977, 2019 08.
Article in English | MEDLINE | ID: mdl-30842608

ABSTRACT

Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.


Subject(s)
Janus Kinase 1/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/physiology , Signal Transduction/physiology , Animals , Apoptosis , Cell Line, Tumor , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/physiology , Humans , Janus Kinase 1/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mice
15.
Leukemia ; 33(4): 995-1010, 2019 04.
Article in English | MEDLINE | ID: mdl-30470838

ABSTRACT

Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR- as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity.


Subject(s)
Calreticulin/genetics , Interferon-alpha/pharmacology , Janus Kinase 1/metabolism , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/drug therapy , STAT1 Transcription Factor/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Female , Follow-Up Studies , Humans , Janus Kinase 1/genetics , Male , Mice , Middle Aged , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Prognosis , Retrospective Studies , STAT1 Transcription Factor/genetics , Tumor Cells, Cultured
16.
ACS Appl Mater Interfaces ; 10(45): 38669-38680, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30280884

ABSTRACT

High-performance oxide ceramics (HPOC), such as alumina, zirconia, and dispersion ceramics thereof are successfully used as articulating components in joint arthroplasty. HPOC exhibit excellent wear resistance, high strength, and cytocompatible behavior; however, they lack sufficient tissue bonding capability. Thus, they are primarily deployed as low-wear-bearing articulating components in arthroplasty without direct tissue contact, although proper cellular stimulation would hold significant advantages. Here, we describe a surface modification approach for HPOC, enabling hydrolytically stable interfacial binding of c(RGDyK) peptides and BMP-2 proteins to significantly improve the adhesion and osteogenic differentiation of human mesenchymal stem cells (hMSCs) without altering the mechanical properties of the underlying ceramic substrates. Analyses of cellular attachment of murine fibroblasts (L929), human alveolar basal epithelial cells (A549), hMSCs on c(RGDyK), and osteogenic differentiation of hMSCs on BMP-2-coated interfaces demonstrate significant improvements of cell adhesion and an enhanced osteogenic differentiation potential in vitro. The presented approach provides a strategy for the development of a novel class of bioactive HPOC with osseointegration potential that could lead to novel therapeutic solutions for biomedical applications. Furthermore, the developed surface modification is designed in a way to be readily translated to other medically employed bioinert materials in the future.

18.
Proc Natl Acad Sci U S A ; 115(37): 9282-9287, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150405

ABSTRACT

E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/metabolism , Cyclin E/biosynthesis , Cyclin-Dependent Kinase 2/biosynthesis , DNA Repair , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Oncogene Proteins/biosynthesis , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cyclin E/genetics , Cyclin-Dependent Kinase 2/genetics , Cyclins/biosynthesis , Cyclins/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Knockout , Oncogene Proteins/genetics
19.
Sci Rep ; 8(1): 6748, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712969

ABSTRACT

Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.


Subject(s)
Cell Nucleus/genetics , DNA Damage/genetics , Poly ADP Ribosylation/genetics , Thiolester Hydrolases/genetics , Adenosine Diphosphate Ribose/genetics , Adenosine Diphosphate Ribose/metabolism , Cell Nucleus/metabolism , Humans , Pol1 Transcription Initiation Complex Proteins/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly Adenosine Diphosphate Ribose/genetics , Poly(ADP-ribose) Polymerases/genetics , Protein Processing, Post-Translational/genetics
20.
Front Immunol ; 9: 393, 2018.
Article in English | MEDLINE | ID: mdl-29616016

ABSTRACT

Life-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable. Heparan sulfate (HS) fragments belong to the class of danger/damage-associated molecular patterns liberated from endothelial-bound proteoglycans by heparanase during tissue injury associated with trauma or sepsis. We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes. By using a novel Medical-In silico approach that combines conventional cell culture experiments with machine learning algorithms, we aimed to reduce a significant part of the expensive and time-consuming cell culture experiments and data generation by using computational intelligence (refinement and replacement). Cardiomyocytes exposed to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C and the activation of caspase 3 (both p < 0.001). Notably, the exposure of HS resulted in the induction of necroptosis by tumor necrosis factor α and receptor interaction protein 3 (p < 0.05; p < 0.01) and, hence, an increased level of necrotic cardiomyocytes. In conclusion, using this novel Medical-In silico approach, our data suggest (i) that HS induces necroptosis in cardiomyocytes by phosphorylation (activation) of receptor-interacting protein 3, (ii) that HS is a therapeutic target in trauma- or sepsis-associated cardiomyopathy, and (iii) indicate that this proof-of-concept is a first step toward simulating the extent of activated components in the pro-apoptotic pathway induced by HS with only a small data set gained from the in vitro experiments by using machine learning algorithms.


Subject(s)
Cardiomyopathies/metabolism , Cell Culture Techniques/methods , Heparitin Sulfate/metabolism , Machine Learning , Myocytes, Cardiac/physiology , Sepsis/metabolism , Wounds and Injuries/metabolism , Algorithms , Animals , Apoptosis , Cardiomyopathies/pathology , Caspase 3/metabolism , Cells, Cultured , Cytochromes c/metabolism , Humans , Mice , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sepsis/pathology , Signal Transduction , Wounds and Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL