Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125877

ABSTRACT

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Subject(s)
Fusion Proteins, bcr-abl , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Mice , Humans , Peptides/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Line, Tumor , Philadelphia Chromosome/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
2.
J Control Release ; 373: 583-598, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047872

ABSTRACT

Dysregulation of the CXCL12/CXCR4 axis is implicated in autoimmune, inflammatory, and oncogenic diseases, positioning CXCR4 as a pivotal therapeutic target. We evaluated optimized variants of the specific endogenous CXCR4 antagonist, EPI-X4, addressing existing challenges in stability and potency. Our structure-activity relationship study investigates the conjugation of EPI-X4 derivatives with long-chain fatty acids, enhancing serum albumin interaction and receptor affinity. Molecular dynamic simulations revealed that the lipid moieties stabilize the peptide-receptor interaction through hydrophobic contacts at the receptor's N-terminus, anchoring the lipopeptide within the CXCR4 binding pocket and maintaining essential receptor interactions. Accordingly, lipidation resulted in increased receptor affinities and antagonistic activities. Additionally, by interacting with human serum albumin lipidated EPI-X4 derivatives displayed sustained stability in human plasma and extended circulation times in vivo. Selected candidates showed significant therapeutic potential in human retinoblastoma cells in vitro and in ovo, with our lead derivative exhibiting higher efficacies compared to its non-lipidated counterpart. This study not only elucidates the optimization trajectory for EPI-X4 derivatives but also underscores the intricate interplay between stability and efficacy, crucial for delineating their translational potential in clinical applications.

3.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528146

ABSTRACT

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Subject(s)
Body Fluids , Extracellular Vesicles , Viruses , Zika Virus Infection , Zika Virus , Female , Humans , Phosphatidylserines , Virus Attachment
4.
J Virol ; 98(4): e0119023, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501840

ABSTRACT

Topically applied microbicides may play a critical role in preventing sexual transmission of human immunodeficiency virus type 1 (HIV-1); however, their efficacy can be compromised by amyloid fibrils present in semen, which significantly increase HIV-1 infectivity. This phenomenon may have contributed to the failure of most microbicide candidates in clinical settings. Understanding the impact of semen on microbicide effectiveness is thus crucial. In our study, we evaluated the influence of semen on the neutralizing activity of broadly neutralizing antibodies (bNAbs), including PG16, PGT121, 10-1074, 3BNC117, and VRC01, which are potential microbicide candidates. We found that semen enhances infection of HIV-1 transmitted/founder viruses but only marginally affects the neutralizing activity of tested antibodies, suggesting their potential for microbicide application. Our findings underscore the need to consider semen-mediated enhancement when evaluating and developing microbicides and highlight the potential of incorporating HIV-1 bNAbs in formulations to enhance efficacy and mitigate HIV-1 transmission during sexual encounters.IMPORTANCEThis study examined the impact of semen on the development of microbicides, substances used to prevent the transmission of HIV-1 during sexual activity. Semen contains certain components that can render the virus more infectious, posing a challenge to microbicide effectiveness. Researchers specifically investigated the effect of semen on a group of powerful antibodies called broadly neutralizing antibodies, which can neutralize a large spectrum of different HIV-1 variants. The results revealed that semen only had a minimal effect on the antibodies' ability to neutralize the virus. This is promising because it suggests that these antibodies could still be effective in microbicides, even in the presence of semen. Understanding this interaction is crucial for developing better strategies to prevent HIV-1 transmission. By incorporating the knowledge gained from this study, scientists can now focus on creating microbicides that consider the impact of semen, bringing us closer to more effective prevention methods.


Subject(s)
Anti-Infective Agents , HIV Infections , HIV-1 , Semen , Humans , Anti-Infective Agents/pharmacology , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/pharmacology , HIV Antibodies , HIV Infections/transmission , HIV-1/physiology , Semen/chemistry , Semen/virology
6.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212464

ABSTRACT

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Male , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Immunity, Humoral , Antibodies, Viral , Inflammation
7.
Antibodies (Basel) ; 13(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38247569

ABSTRACT

The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19. Despite the success of mAbs, the evolution of SARS-CoV-2 continues to pose challenges and the available antibodies are no longer effective. New variants require the ongoing development of effective antibodies. In the present study, we describe the generation and characterization of neutralizing mAbs against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein by combining plasmid DNA and recombinant protein vaccination. By integrating genetic immunization for rapid antibody production and the potent immune stimulation enabled by protein vaccination, we produced a rich pool of antibodies, each with unique binding and neutralizing specificities, tested with the ELISA, BLI and FACS assays and the pseudovirus assay, respectively. Here, we present a panel of mAbs effective against the SARS-CoV-2 variants up to Omicron BA.1 and BA.5, with the flexibility to target emerging variants. This approach ensures the preparedness principle is in place to address SARS-CoV-2 actual and future infections.

SELECTION OF CITATIONS
SEARCH DETAIL