Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(20): 13760-13769, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718186

ABSTRACT

The first structurally characterized organometallic multidecker sandwich complexes featuring a cycloheptatrienyl ring (Cht, C7H73-) in the coordination sphere are presented. The synthesis of inverse sandwich complexes of the rare earth elements YIII and ErIII with a bridging cycloheptatrienyl ligand of the type [(thf)(BH4)2LnIII(µ-η7:η7-Cht)LnIII(BH4)(thf)2] is described first. The subsequent introduction of the CotTIPS ligand (CotTIPS = 1,4-(iPr3Si)2C8H62-) into the coordination sphere of the rare earth cations resulted in the isolation of unprecedented triple-decker compounds with the formula [(thf)3K{(η8-CotTIPS)LnIII}2(µ-η7:η7-Cht)], bearing a seven-membered aromatic carbon ring as a middle deck. These compounds are also the first examples of rare earth triple-decker complexes not bridged by a Cot derivative, based on purely carbon-based ligands. The magnetic properties of the respective ErIII congeners were investigated in detail, leading to the observation of antiferromagnetic coupling of the ErIII cations and a blocking temperature of 13.5 K. The conversion of the YIII compound [(thf)3K{(η8-CotTIPS)YIII}2(µ-η7:η7-Cht)] with [YIII(Cot)I(thf)2] resulted in ligand rearrangement and the selective formation of the first triple-decker complex ([(η8-CotTIPSYIII)2(µ-η8:η8-Cot)]) featuring two Cot ligands with different substituents in its coordination sphere.

2.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38390783

ABSTRACT

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

3.
Chem Sci ; 15(4): 1338-1347, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274072

ABSTRACT

Synthesis and characterization of Lewis base free coordination polymers of selected lanthanides are presented. For this purpose, the substituted CotTIPS ligand (CotTIPS = 1,4-bis-triisopropylsilyl-cyclo-octatetraendiide) was used to synthesize homoleptic, anionic multidecker compounds of the type [K{LnIII(ɳ8-CotTIPS)2}]n. Depending on the solvent used for crystallization and the ionic radii of the lanthanide cations, three different categories of one-dimensional heterobimetallic coordination polymers were obtained in the solid state. For the early lanthanides La and Ce a unique helical conformation was obtained by crystallization from toluene, while the ionic radius of Pr seems to be a turning point towards the crystallization of zigzag polymers. For Er a third structural motif, a trapezoidal wave polymer was observed. Additionally, the zigzag polymer for all compounds could be obtained by changing the solvent from toluene to Et2O, reavealing a correlation between solid-state structure and ionic radii as well as solvent. While photoluminescence (PL) properties of Cot-lanthanide compounds are scarce, the La complexes show ligand centered green luminescence, whereas the Ce complexes reveal deep red emission origin from d-f transitions. The Er-compounds are single-molecule magnets, in which the magnetic relaxation of each Er ion occurs isolated from its neighbors at temperatures above 10 K, while below 9 K a strong antiferromagnetic coupling between the Er ions was seen.

4.
Nature ; 620(7972): 92-96, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532814

ABSTRACT

Cyclic nanometre-scale sandwich complexes assembled from individual building blocks were synthesized. Sandwich complexes, in which a metal ion is π-coordinated by two planar aromatic organic rings belong to the foundations of organometallic chemistry. They have been successfully used in a wide variety of applications ranging from catalysis, synthesis and electrochemistry to nanotechnology, materials science and medicine1,2. Extending the sandwich structural motif leads to linear multidecker compounds, in which aromatic organic rings and metal atoms are arranged in an alternating fashion. However, the extension to a cyclic multidecker scaffold is unprecedented. Here we show the design, synthesis and characterization of an isomorphous series of circular sandwich compounds, for which the term 'cyclocenes' is suggested. These cyclocenes consist of 18 repeating units, forming almost ideally circular, closed rings in the solid state, that can be described by the general formula [cyclo-MII(µ-η8:η8-CotTIPS)]18 (M = Sr, Sm, Eu; CotTIPS = 1,4-(iPr3Si)2C8H62-). Quantum chemical calculations lead to the conclusion that a unique interplay between the ionic metal-to-ligand bonds, the bulkiness of the ligand system and the energy gain on ring closure, which is crucially influenced by dispersion interactions, facilitate the formation of these cyclic systems. Up to now, only linear one-dimensional multidecker sandwich compounds have been investigated for possible applications such as nanowires3-10. This textbook example of cyclic sandwich compounds is expected to open the door for further innovations towards new functional organometallic materials.

5.
Chem Commun (Camb) ; 59(59): 9070-9073, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37409537

ABSTRACT

The synthesis of the first half-sandwich complexes based on the cyclononatetraenyl (Cnt = C9H9-) ligand ([LnIII(η9-Cnt)(η3-BH4)2(thf)] (Ln = La, Ce)) is reported. The title compounds were obtained from the reaction of [Ln(BH4)3(thf)3] and [K(Cnt)]. Further solvation of [LnIII(η9-Cnt)(η3-BH4)2(thf)] with tetrahydrofuran (THF) resulted in a reversible decoordination of the Cnt ring and the formation of the ionic species [LnIII(η3-BH4)2(thf)5][Cnt]. Removal of THF from [LaIII(η9-Cnt)(η3-BH4)2(thf)] gave the polymeric compound [LaIII(µ-η2:η2-BH4)2(η3-BH4)(η9-Cnt)]n.

6.
Chem Sci ; 14(8): 2149-2158, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36845933

ABSTRACT

Synthesis of new organo-lanthanide polyphosphides with an aromatic cyclo-[P4]2- moiety and a cyclo-[P3]3- moiety is presented. For this purpose, the divalent LnII-complexes [(NON)LnII(thf)2] (Ln = Sm, Yb) ((NON)2- = 4,5-bis(2,6-diisopropylphenyl-amino)-2,7-di-tert-butyl-9,9-dimethylxanthene) and trivalent LnIII-complexes [(NON)LnIIIBH4(thf)2] (Ln = Y, Sm, Dy) were used as precursors in the reduction process of white phosphorus. While using [(NON)LnII(thf)2] as a one-electron reducing agent the formation of organo-lanthanide polyphosphides with a cyclo-[P4]2- Zintl anion was observed. For comparison, we investigated a multi-electron reduction of P4 by a one-pot reaction of [(NON)LnIIIBH4(thf)2] with elemental potassium. As products molecular polyphosphides with a cyclo-[P3]3- moiety were isolated. The same compound could also be obtained by reducing the cyclo-[P4]2- Zintl anion within the coordination sphere of SmIII in [{(NON)SmIII(thf)2}2(µ-η4:η4-P4)]. Reduction of a polyphosphide within the coordination sphere of a lanthanide complex is unprecedented. Additionally, the magnetic properties of the dinuclear DyIII-compound bearing a bridging cyclo-[P3]3- moiety were investigated.

7.
Angew Chem Int Ed Engl ; 62(18): e202218107, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36651327

ABSTRACT

Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.

8.
Chem Commun (Camb) ; 58(57): 7976-7979, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35758854

ABSTRACT

Using dianionic metallole ligands (silole or germole) and the cyclooctatetraendiide dianion, heteroleptic lanthanide multi-decker complexes have been prepared. Due to the heteroatom of the metallole ligands intermolecular bridging between the sandwich complexes takes place. Our work highlights that different combinations of the lanthanide and heterocycle lead to different intermolecular interactions including a dimeric La-silole sandwich complex, a La-germole ladder-type polymeric species and a Ce-germole coordination polymer.

9.
Chem Sci ; 13(12): 3363-3368, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35432861

ABSTRACT

A convenient pathway to new molecular organo-lanthanide-polyarsenides in general and to a f-element complex with the largest polyarsenide ligand in detail is reported. For this purpose, the activation of the solid state material As0 nano (nanoscale gray arsenic) by the multi electron reducing agents [K(18-crown-6)][(Ln+II)2(µ-η6:η6-C6H6)] (Ln = La, Ce, Cp'' = 1,3-bis(trimethylsilyl)cyclopentadienyl anion) and [K(18-crown-6)]2[(Ln+II)2(µ-η6:η6-C6H6)] (Ln = Ce, Nd) is shown. These non-classical divalent lanthanide compounds were used as three and four electron reducing agents where the product formation can be directed by variation of the applied reactant. The obtained Zintl anions As3 3-, As7 3-, and As14 4- were previously not accessible in molecular 4f-element chemistry. Additionally, the corresponding compounds with As14 4--moieties represent the largest organo-lanthanide-polyarsenides known to date.

10.
J Am Soc Mass Spectrom ; 33(4): 695-703, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35298159

ABSTRACT

Electrospray ionization of THF solutions of preformed [K(18-c-6)][M(COT)2] (M = Dy(III), Y(III); COT = C8H82-,18-c-6 = C12H24O6) yields the isolated species [(M(COT)2)n+1 + nK]- with n = 0-3. High-resolution ion mobility spectrometry combined with density functional theory calculations performed for the n = 0-2 aggregates indicate that anionic multidecker stacks interlinked by potassium cations are formed. The alternating metal ions are aligned linearly: COT2--M3+-COT2--K+-COT2--M3+-COT2-. The different M3+ ionic radii lead to slight but resolvable changes in mobility and thus collision cross sections indicative of different overall heights of the multidecker stacks. CID measurements show that the aggregates fragment by cleavage at the K+ interconnections.

11.
Chem Sci ; 13(4): 945-954, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35211259

ABSTRACT

Herein, we present the synthesis and characterization of heteroleptic lanthanide complexes bearing a dianionic η5-plumbole ligand in their coordination sphere. The reaction proceeds via a salt elimination reaction between the dilithioplumbole ([Li(thf)]2[1,4-bis-tert-butyl-dimethylsilyl-2,3-bis-phenyl-plumbolyl] = [Li2(thf)2(η5-LPb)]) and specifically designed [Ln(η8-COTTIPS)BH4] precursors (Ln = lanthanide, La, Ce, Sm, Er; COTTIPS = 1,4-bis-triisopropylsilyl-cyclooctatetraenyl), that are capable of stabilizing a planar plumbole moiety in the coordination sphere of different trivalent lanthanide ions. In-depth ab initio calculations show that the aromaticity of the dianionic plumbole is retained upon coordination. Electron delocalization occurs from the plumbole HOMO to an orbital of mainly d-character at the lanthanide ion. The magnetic properties of the erbium congener were investigated in detail, leading to the observation of magnetic hysteresis up to 5 K (200 Oe s-1), an unequivocal proof for single molecule magnet behavior in this system. The magnetic behavior of the erbium species can be modulated by manipulating the position of the lithium cation in the complex, which directly influences the bonding metrics in the central [(η5-LPb)Er(η8-COTTIPS)]- fragment. This allowed us to assess a fundamental magneto-structural correlation in an otherwise identical inner coordination sphere.

12.
ACS Omega ; 7(5): 4683-4693, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155960

ABSTRACT

The coordination chemistry of a ferrocene ligand with one bulky amidinate function attached to each ring toward two different coinage metal precursors was investigated. In dependence of the metal and the co-ligands, "ansa" type structures and non-bridged structures were obtained. Six different compounds are reported. In the "ansa" type structures, short Fe-M (M = Cu, Ag) distances were observed in the molecular structures in the solid state. However, theoretical calculations (DFT) did not reveal a stabilizing metal-metal interaction. Instead, dispersion interactions within the ligand and between the ligand and metal seem to represent the main stabilization forces.

13.
Angew Chem Int Ed Engl ; 60(46): 24493-24499, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34486795

ABSTRACT

Reduction of [SmIII (COT1,4-SiiPr3 )(BH4 )(thf)] (COT1,4-SiiPr3 =1,4-(i Pr3 Si)3 C8 H6 ) with KC8 resulted in [SmIII/II/III (COT1,4-SiiPr3 )4 ], the first example of a homoleptic lanthanide quadruple-decker. As indicated by an analysis of the bond metrics in the solid-state, the inner Sm ion is present in the divalent oxidation state, while the outer ones are trivalent. This observation could be confirmed by quantum chemical calculations. Mechanistic studies revealed not only insight into possible formation pathways of [SmIII/II/III (COT1,4-SiiPr3 )4 ] but also resulted in the transformation to other mixed metal sandwich complexes with unique structural properties. These are the 1D-polymeric chain structured [KSmIII (COT1,4-SiiPr3 )]n and the hexametallic species [(tol)K(COT1,4-SiiPr3 )SmII (COT1,4-SiiPr3 )K]2 which were initially envisioned as possible building blocks as part of different retrosynthetically guided pathways that we developed.

14.
Chemistry ; 27(56): 14128-14137, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34403183

ABSTRACT

A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5 -P5 )] (Cp*=C5 Me5 ) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(Dipp BDI-Mg(CH3 ))2 ] (Dipp BDI={[2,6-i Pr2 C6 H3 NCMe]2 CH}- ) reacts with [Cp*Fe(η5 -P5 )] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5 -P5 )] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5 -P5 )]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5 -P5 )]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7 )3- was obtained by molecular calcium hydride mediated P4 reduction.

15.
Chemistry ; 27(61): 15119-15126, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34427374

ABSTRACT

A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM-C(N-Dipp)2 H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM-C(N-Dipp)2 }(Ln )] (M=Li, Na, K, Rb, Cs; L=thf, Et2 O). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPh2 CH2 -C(N-Dipp)2 }]6 metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes.

16.
Chemistry ; 27(54): 13558-13567, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34196435

ABSTRACT

Sandwich complexes of lanthanides have recently attracted a considerable amount of interest due to their applications as Single Molecule Magnet (SMM). Herein, a comprehensive series of heteroleptic lanthanide sandwich complexes ligated by the cyclononatetraenyl (Cnt) and the cyclooctatetraenyl (Cot) ligand [Ln(Cot)(Cnt)] (Ln=Tb, Dy, Er, Ho, Yb, and Lu) is reported. The coordination behavior of the Cnt ligand has been investigated along the series and shows different coordination patterns in the solid-state depending on the size of the corresponding lanthanide ion without altering its overall anisotropy. Besides the characterization in the solid state by single-crystal X-ray diffraction and in solution by 1 H NMR, static magnetic studies and ab initio computational studies were performed.

17.
Chem Commun (Camb) ; 57(45): 5503-5506, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33978648

ABSTRACT

Herein, we present a novel approach towards organometallic group 13/15-compounds, i.e. the reaction of nanoparticular arsenic and antimony with low-valent aluminium species. The reaction of the two-electron reducing agent [AlCp*]4 (Cp* = C5Me5) with arsenic nanoparticles gave rise to a mixture of two unprecedented deca- and dodecanuclear Al-As clusters. In contrast, the analogous transformation with nanoparticular antimony yielded the already known Al-Sb compound [(AlCp*)3Sb2]. Additionally, two different dialanes [AlCp*X]2 (X = Br, I) were employed as one-electron reducing agents, forming calix like coordination compounds upon reaction with nano arsenic. The isolated species significantly enlarge the accessible structural variety of molecular group 13/15 compounds, highlighting the exceptional utility and reactivity of nanoscale group 15 precursors.

18.
Dalton Trans ; 48(23): 8153-8160, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31070636

ABSTRACT

In order to investigate the difference between mono- and bimetallic systems in the catalytic hydroamination/cyclization reaction two mono- and bimetallic amidinate samarium catalysts, featuring comparable coordination environments, were synthesized. Both systems comprise two {N(SiMe3)2}- leaving groups to minimize the steric influence of the corresponding amidinate ligand. The bimetallic system is based on a bis(amidinate) 4,6-dibenzofuran derivative, while N,N'-bis(2,6-diisopropylphenyl)benzamidinate was employed as ligand for the monometallic catalyst. For the hydroamination/cyclization reaction five different substrates were investigated. Additionally, kinetic studies were carried out to gain deeper understanding of the mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...