Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 4(1): fcac039, 2022.
Article in English | MEDLINE | ID: mdl-35233527

ABSTRACT

A deficient transport of amyloid-ß across the blood-brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer's disease and cerebral amyloid angiopathy, respectively. At the blood-brain barrier, amyloid-ß efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-ß transport across the blood-brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-ß clearance via low-density lipoprotein receptor-related protein 1 across the blood-brain barrier. We further demonstrate that risk factors for Alzheimer's disease, amyloid-ß expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-ß clearance proposing a measure to evaluate Alzheimer's disease and ageing, as well as a target for counteracting amyloid-ß build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-ß assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-ß across the blood-brain barrier.

2.
Cells ; 9(12)2020 12 14.
Article in English | MEDLINE | ID: mdl-33327645

ABSTRACT

Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.


Subject(s)
Brain/metabolism , Endothelium/metabolism , Glycocalyx/metabolism , Membrane Proteins/metabolism , Transcytosis , Animals , Humans , Models, Biological
3.
Mol Pharm ; 17(12): 4709-4714, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33175550

ABSTRACT

Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Carriers/chemistry , Glioma/drug therapy , Phosphorylcholine/analogs & derivatives , Polymethacrylic Acids/chemistry , Antineoplastic Combined Chemotherapy Protocols/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Drug Synergism , Endocytosis , Glioma/pathology , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Phosphorylcholine/chemistry , Solubility
4.
Int J Mol Sci ; 20(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795330

ABSTRACT

The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive "reactive" astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.


Subject(s)
Astrocytes/drug effects , Brain Neoplasms/drug therapy , Drug Screening Assays, Antitumor/methods , Glioblastoma/drug therapy , Mitochondria/drug effects , Antineoplastic Agents/pharmacology , Astrocytes/metabolism , Brain Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coculture Techniques/methods , Glioblastoma/metabolism , Humans , Mitochondria/metabolism , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...